Neural Sensory Processing Group

Publications

Efficient coding explains neural response homeostasis and stimulus-specific adaptation
Young E and Ahmadian Y
bioRxiv, 2023
The stabilized supralinear network accounts for the contrast dependence of visual cortical gamma oscillations
Holt CJ, Miller KD and Ahmadian Y
bioRxiv, 2023
Sniff-synchronized, gradient-guided olfactory search by freely moving mice
Findley TM<sup>†</sup>, Wyrick DG<sup>†</sup>, Cramer JL, Brown MA, Holcomb B, Attey R, Yeh D, Monasevitch E, Nouboussi N, Cullen I, Songco JO, King JF, Ahmadian Y<sup>*</sup> and Smear MC<sup>*</sup>
eLife, 2021
What is the dynamical regime of cerebral cortex?
Ahmadian Y and Miller KD
Neuron, 2021
Somatostatin-expressing interneurons in the auditory cortex mediate sustained suppression by spectral surround
Lakunina AA, Nardoci MB, Ahmadian Y and Jaramillo S
The Journal of Neuroscience, 2020
Deviation from the matching law reflects an optimal strategy involving learning over multiple timescales
Iigaya K, Ahmadian Y, Sugrue LP, Corrado GS, Loewenstein Y, Newsome WT and Fusi S
Nature Communications, 2019
Heading direction with respect to a reference point modulates place-cell activity
Jercog PE, Ahmadian Y, Woodruff C, Deb-Sen R, Abbott LF and Kandel ER
Nature Communications, 2019
Inferring neural circuit structure from datasets of heterogeneous tuning curves
Arakaki T, Barello G and Ahmadian Y
PLOS Computational Biology, 2019
Sniff invariant odor coding
Shusterman R, Sirotin YB, Smear MC, Ahmadian Y and Rinberg D
eNeuro, 2018
Click to see caption...
The dynamical regime of sensory cortex: stable dynamics around a single stimulus-tuned attractor account for patterns of noise variability
Hennequin G, Ahmadian Y<sup>*</sup>, Rubin DB<sup>*</sup>, Lengyel M<sup>Ŧ</sup> and Miller KD<sup>Ŧ</sup>
Neuron, 2018
Properties of networks with partially structured and partially random connectivity
Ahmadian Y, Fumarola F and Miller KD
Physical Review E, 2015
Analysis of the stabilized supralinear network
Ahmadian Y, Rubin DB and Miller KD
Neural computation, 2013
Modeling the impact of common noise inputs on the network activity of retinal ganglion cells
Vidne M, Ahmadian Y, Shlens J, Pillow JW, Kulkarni J, Litke AM, Chichilnisky EJ, Simoncelli E and Paninski L
Journal of Computational Neuroscience, 2012
Incorporating naturalistic correlation structure improves spectrogram reconstruction from neuronal activity in the songbird auditory midbrain
Ramirez AD, Ahmadian Y, Schumacher J, Schneider D, Woolley SMN and Paninski L
Journal of Neuroscience, 2011
Learning unbelievable probabilities
Pitkow X, Ahmadian Y and Miller KD
NIPS, 2011
Model-based decoding, information estimation, and change-point detection techniques for multineuron spike trains
Pillow JW, Ahmadian Y and Paninski L
Neural Computation, 2011
Designing optimal stimuli to control neuronal spike timing
Ahmadian Y, Packer AM, Yuste R and Paninski L
Journal of Neurophysiology, 2011
Efficient markov chain monte carlo methods for decoding neural spike trains
Ahmadian Y, Pillow JW and Paninski L
Neural Computation, 2011
A new look at state-space models for neural data
Paninski L, Ahmadian Y, Ferreira DG, Koyama S, Rad KR, Vidne M, Vogelstein J and Wu W
Journal of Computational Neuroscience, 2010
The relationship between optimal and biologically plausible decoding of stimulus velocity in the retina
Lalor EC, Ahmadian Y and Paninski L
Journal of the Optical Society of America A, 2009
Negative echo in the density evolution of ultracold fermionic gases
Fumarola F, Ahmadian Y, Aleiner IL and Altshuler BL
Physical Review Letters, 2007
Antilocalization in coulomb blockade
Ahmadian Y and Aleiner IL
Physical Review B, 2006
Acoustic phonon scattering in a low density, high mobility algan/gan field-effect transistor
Henriksen EA, Syed S, Ahmadian Y, Manfra MJ, Baldwin KW, Sergent AM, Molnar RJ and Stormer HL
Applied Physics Letters, 2005
Spin-related effects in transport properties of open quantum dots
Ahmadian Y, Catelani G and Aleiner IL
Physical Review B, 2005