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Controllability & Observability
(two-sided “extension of PCA" to dynamical systems)
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controllability & observability are core concepts in control-theory
that afford useful re-interpretations for the analysis of circuits
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reduced model

classic methods try to capture the top subspace of both P and Q

fun fact: for our ISN model of M1, we recover rotational dynamics
(also revealed by jPCA)
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Outlook

control-theoretic perspectives on RNNs offers new ways of
understanding them (here, we've barely scratched the surface)

use of optogenetic access to constrain 1/0 models of neural circuits

motor control, BCls, reinforcement learning, behavioural modelling, ...
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