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Summary

When stimulated, neural populations in the visual cortex exhibit fast rhythmic activity with frequencies
in the gamma band (30-80 Hz). The gamma rhythm manifests as a broad resonance peak in the power-
spectrum of recorded local field potentials, which exhibits various stimulus dependencies. In particular, in
macaque primary visual cortex (V1), the gamma peak frequency increases with increasing stimulus con-
trast. Moreover, this contrast dependence is local: when contrast varies smoothly over visual space, the
gamma peak frequency in each cortical column is controlled by the local contrast in that column’s receptive
field. No parsimonious mechanistic explanation for these contrast dependencies of V1 gamma oscillations
has been proposed. The stabilized supralinear network (SSN) is a mechanistic model of cortical circuits
that has accounted for a range of visual cortical response nonlinearities and contextual modulations, as
well as their contrast dependence. Here, we begin by showing that a reduced SSN model without retino-
topy robustly captures the contrast dependence of gamma peak frequency, and provides a mechanistic
explanation for this e�ect based on the observed non-saturating and supralinear input-output function of
V1 neurons. Given this result, the local dependence on contrast can trivially be captured in a retinotopic
SSN which however lacks horizontal synaptic connections between its cortical columns. However, long-
range horizontal connections in V1 are in fact strong, and underlie contextual modulation e�ects such as
surround suppression. We thus explored whether a retinotopically organized SSN model of V1 with strong
excitatory horizontal connections can exhibit both surround suppression and the local contrast dependence
of gamma peak frequency. We found that retinotopic SSNs can account for both e�ects, but only when the
horizontal excitatory projections are composed of two components with di�erent pa�erns of spatial fall-o�
with distance: a short-range component that only targets the source column, combined with a long-range
component that targets columns neighboring the source column. We thus make a specific qualitative pre-
diction for the spatial structure of horizontal connections in macaque V1, consistent with the columnar
structure of cortex.
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When presented with a stimulus, populations of neu-
rons within visual cortices exhibit elevated rhythmic ac-
tivity with frequencies in the so-called gamma band (30-
80 Hz) (Jia et al., 2013; Ray and Maunsell, 2010). These
gamma oscillations can be observed in local field po-
tential (LFP) or electroencephalogram (EEG) recordings
and, when present, manifest as peaks in the LFP/EEG
power-spectra. It has been proposed that gamma oscil-
lations perform key functions in neural processing such
as feature binding (Singer, 1999), dynamic communica-
tion or routing between cortical areas (Fries, 2005, 2015;
Ni et al., 2016; Palmigiano et al., 2017), or as a timing or
“clock” mechanism that can enable coding by spike tim-
ing (Buzsáki and Chrobak, 1995; Draguhn and Buzsáki,
2004; Fries et al., 2007; Hopfield, 2004; Je�erys et al., 1996).
These proposals remain controversial (Burns et al., 2010;
Ray and Maunsell, 2010).

While the computational role of gamma rhythms is
not well understood, much is known about their phe-
nomenology. For example, defining characteristics of
gamma oscillations, such as the width and height of the
spectral gamma peak, as well as its location on the fre-
quency axis (peak frequency), exhibit systematic depen-
dencies on various stimulus parameters (Gieselmann and
Thiele, 2008; Henrie and Shapley, 2005; Jia et al., 2013; Ray
and Maunsell, 2010). In particular, in the primary visual
cortex (V1) of macaque monkeys, the power-spectrum
gamma peak moves to higher frequencies as the contrast
of a large and uniform grating stimulus is increased (Jia
et al., 2013; Ray and Maunsell, 2010). This establishes a
monotonic relationship between gamma peak frequency
and the grating contrast. We will refer to this contrast-
frequency relationship, obtained using a grating stimulus
with uniform contrast, as the “contrast dependence” of
gamma peak frequency.

Moreover, when animals are presented with a stimulus
with non-uniform contrast that varies over the visual
field (and hence over nearby cortical columns in V1), it
is the local stimulus contrast that determines the peak
frequency of gamma oscillations at a cortical location
(Ray and Maunsell, 2010). Specifically, Ray and Maunsell
2010 used a Gabor stimulus (which has smoothly decay-
ing contrast with increasing distance from the stimulus
center), and found that the gamma peak frequency of dif-
ferent V1 recording sites match the predictions resulting
from the frequency-contrast relationship obtained from
the uniform grating experiment, but using the local Ga-
bor contrast in that site’s receptive field. We refer to

this second e�ect as the “local contrast dependence” of
gamma peak frequency.

It is well-known that networks of excitatory and in-
hibitory neurons with biologically realistic neural and
synaptic time-constants can exhibit oscillations with fre-
quency in the gamma band (e.g., Brunel and Wang 2003;
Tsodyks et al. 1997; see Buzsáki and Wang 2012 for a
review). However, no mechanistic circuit model of vi-
sual cortex has been proposed which can robustly and
comprehensively account for the contrast dependence of
gamma oscillations. Jia et al. 2013 did propose a rate
model that accounts for the increase of gamma peak fre-
quency with increasing global contrast. Their treatment
only modeled the interactions between a single excita-
tory and a single inhibitory population, which is su�i-
cient for spatially uniform stimuli, but cannot explain the
local contrast dependence of the gamma peak frequency.
Moreover, even in the case of a uniform-contrast stimu-
lus, this model could only produce very weak contrast-
dependence of peak frequency, and further required a
contrast-dependent scaling of the intrinsic time-constant
of excitatory neurons. Here, we develop a parsimonious
and self-contained mechanistic model (with fixed neural
and network parameters) which accounts for the global
as well as local contrast dependence of the gamma peak.

It is not clear how the local contrast dependence of
gamma oscillations can be reconciled with key features
of cortical circuits. This locality would trivially emerge
if cortical columns were non- or weakly interacting; in
that case each column’s oscillation properties would be
determined by its feedforward input (controlled by the
local contrast). However, nearby cortical columns do in-
teract strongly via the prominent horizontal connections
connecting them (Gilbert and Wiesel, 1989). These in-
teractions manifest, e.g., in contextual modulations of V1
responses, such as in surround suppression (Cavanaugh
et al., 2002), which are thought to be partly mediated by
horizontal connections (Schwabe et al., 2010).

Surround suppression is the phenomena wherein stim-
uli outside the classical receptive field (RF) of V1 neu-
rons, which by themselves cannot drive the cell to re-
spond, nevertheless modulate the cells’ response, typi-
cally by suppressing it. Surround suppression results in a
non-monotonic “size tuning curve”, which is obtained by
measuring a cell’s response to circular gratings of vary-
ing sizes centered on that cell’s RF: the response first in-
creases with increasing stimulus size, but then decreases
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as the grating increasingly covers regions surrounding
the RF. Here we test whether a model of V1, featuring bi-
ologically plausible horizontal connections, can capture
both surround suppression and the local contrast depen-
dence of gamma oscillations.

A parsimonious, biologically plausible model of cortical
circuitry which has successfully accounted for a range
of cortical contextual modulations and their contrast de-
pendence is the stabilized supralinear network (SSN) (Ah-
madian et al., 2013; Rubin et al., 2015). In particular, the
SSN robustly captures the contrast dependencies of sur-
round suppression, e.g., that size tuning curves peak at
smaller stimulus sizes with increasing stimulus contrast
(Rubin et al., 2015). Being a recurrently connected fir-
ing rate model with excitatory and inhibitory neurons,
we expect the SSN to be able to exhibit oscillations simi-
lar to gamma rhythms. However, to capture fast dynam-
ical phenomena, and in particular the gamma band res-
onance frequency, it is key to properly account for fast
synaptic filtering as provided by the fast ionotropic recep-
tors, AMPA and GABAA (Barbieri et al., 2014; Brunel and
Wang, 2003; Ledoux and Brunel, 2011). At the same time,
it is useful to include the slower NMDA conductances, to
help stabilize the network dynamics given strong over-
all recurrent excitation. We thus started by extending
the SSN model to properly account for input currents
through di�erent synaptic receptor types, with di�erent
filtering timescales.

Gamma oscillations do not behave like sustained oscil-
lations, as sustained oscillations display a sharp peak in
the power spectrum, typically followed by trailing peaks
at subsequent harmonics. Such oscillations would also
be auto-coherent, i.e. have a consistent phase over mul-
tiple oscillation cycles. By contrast, gamma oscillations
are not auto-coherent and their timing and duration vary
stochastically (Burns et al., 2011, 2010), resulting in a
single broad peak in the power-spectrum, with no vis-
ible higher harmonics (Jia et al., 2013; Ray and Maun-
sell, 2010), consistent with transient (damped) and noise-
driven oscillations (Burns et al., 2011, 2010; Xing et al.,
2012). We therefore studied the SSN in a regime where in
the absence of time-dependent external inputs its firing
rates reach a steady state, but when perturbed it can ex-
hibit damped oscillations with a characteristic frequency
(technically, this means the network is close to, but be-
low, a Hopf bifurcation, i.e., a transition to a regime of
sustained oscillations). When perturbed by structureless
noise that is su�iciently fast (the biological network’s ir-

regular spiking itself can provide such a noise source),
these noise-driven damped oscillations manifest as a res-
onance peak in the power-spectrum of network activity
(Kang et al., 2010; Xing et al., 2012).

We start the Results section by developing an extension
of the SSN that models the dynamics of input currents
through di�erent synaptic receptor types, with di�erent
timescales. We then study a reduced noise-driven SSN
composed of two units representing excitatory (E) and
inhibitory (I) sub-populations. We show that, for a wide
range of biological parameters, this reduced SSN model
generates gamma oscillations with peak frequency that
robustly increases with increasing external drive to the
network. We show that this robust contrast dependence
is a consequence of a key feature of the SSN: the supra-
linear input-output (I/O) function of its neurons (which
is known to fit well the non-saturating and expansive re-
lationship between the firing rate and membrane volt-
age of V1 neurons (Anderson et al., 2000; Priebe and Fer-
ster, 2008)). We next investigate the gamma peak’s lo-
cal contrast dependence using an expanded retinotopi-
cally organized SSN model of V1, with E and I units in
di�erent cortical columns. We show that this network
is capable of reproducing the local contrast dependence
of gamma peak frequency while exhibiting realistic sur-
round suppression. However, as we show, this is only
possible when the spatial fall-o� of excitatory connection
strengths has two distinct components: a sharp imme-
diate fall across a cortical column’s width, and a slower
fall o� that can range over several columns. This “local
plus long-range” spatial structure of horizontal connec-
tions, which we will more shortly refer to as “columnar
structure”, balances the trade-o� between capturing local
contrast dependence (requiring short-range or weak hor-
izontal connections) and surround suppression (requiring
the opposite). We show that achieving this balance does
not require fine-tuning of parameters and is robust to
considerable parameter variations. We end by providing
a mathematical explanation of the mechanism underly-
ing local contrast dependence reconciled with strong sur-
round suppression in this model, based on the structure
of its normal oscillatory modes. Finally, in the Discussion,
we conclude by discussing the implications of our find-
ings for the structure of cortical horizontal connections
and the shape of neural input/output nonlinearities.
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Results

Noise-driven SSN with multiple synaptic currents

As motivated in the introduction, and with the aim of
modeling gamma oscillations, we started by extending
the SSN model to properly account for synaptic currents
through di�erent receptor types with di�erent kinetics.
In its original form, the SSN’s activity dynamics are gov-
erned by standard firing rate equations (Dayan and Ab-
bo�, 2001), in which each neuron is described by a single
dynamical variable: either its output firing rate (Ahma-
dian et al., 2013; Rubin et al., 2015) or its total input cur-
rent (Hennequin et al., 2018). In the extended model, by
contrast, each neuron will have more than one dynami-
cal variable, corresponding to its input currents through
di�erent synaptic receptor types. Concretely, we will in-
clude the three main ionotropic synaptic receptors in the
model: AMPA and NMDA receptors which mediate ex-
citatory inputs, and GABAA (henceforth abbreviated to
GABA) receptors which mediate the inhibitory input. For
a network of N neurons, we will arrange these input cur-
rents to di�erent neurons into three N-dimensional vec-
tors, hα, where α ∈ {AMPA, NMDA, GABA} denotes the
receptor type. To model the kinetics of di�erent recep-
tors, we will ignore the very fast rise-times of all receptor
types (as the corresponding timescales are much faster
than the characteristic timescales of gamma oscillations),
and only account for the receptor decay-times, which we
denote by τα. With this assumption, the dynamics of hαt
are governed by (see Methods for a derivation)

τα
dhαt
dt

+ hαt = Wαrt + Iαt (1)

where rt is the vector of firing rates, Wαrt and Iαt de-
note the recurrent and external inputs to the network
mediated by receptor α, respectively, and Wα are N × N
matrices denoting the contributions of di�erent receptor-
types to recurrent connectivity weightsl; the total recur-
rent connectivity weight matrix is thus given by W ≡∑

αW
α. As in the cortex, the external input to the net-

work is excitatory, and for simplicity we further assume
that it only enters through AMPA receptors (i.e. Iαt is
nonzero only forα = AMPA, and we will thus drop this su-
perscript and denote this input by It ); including an NMDA
components will not a�ect our results, as NMDA is slow
relative to gamma band timescales. To close the system
for the dynamical variables hαt , we have to relate the out-
put rate of a neuron to its total input current. The fast

synaptic filtering provided by AMPA and GABA allows
for a static (or instantaneous) approximation to the input-
output (I/O) transfer function of neurons (Brunel et al.,
2001; Fourcaud and Brunel, 2002) (see Methods for fur-
ther justification of this approximation):

rt = F (htotal
t ) = F

(∑
β

hβt
)

, (2)

where the I/O function F (·) acts element-wise on its vec-
tor argument. As in the original SSN, we take this I/O
transfer function to be a supralinear rectified power-law,
which is the essential ingredient of the SSN (see Fig. 1 A
inset): F (v) ≡ k[v]n+, where k is a positive constant, n > 1
(corresponding to supralinearity), and [x]+ ≡ max(0, x)
denotes rectification. While the I/O function of biologi-
cal neurons saturates at high firing rates (e.g., due to re-
fractoriness), throughout the natural dynamic range of
cortical neurons firing rates stay relatively low. In fact,
in V1 neurons the relationship between the firing rate
and the mean membrane potential (an approximate sur-
rogate for the neuron’s net input) shows no saturation
throughout the entire range of firing rates driven by vi-
sual stimuli, and is well approximated by a supralinear
rectified power-law (Anderson et al., 2000; Priebe and Fer-
ster, 2008).

Two-population model

We start by studying a reduced two-population model of
V1 consisting of two units (or representative mean-field
neurons): one excitatory and one inhibitory unit, respec-
tively representing the excitatory and inhibitory neural
sub-populations in the retinotopically relevant region of
V1. This reduced model is appropriate for studying con-
ditions in which the spatial profile of the activity is irrel-
evant, e.g., for a full-field grating stimulus where we can
assume the relevant V1 network is uniformly activated
by the stimulus. Both units receive external inputs, and
make reciprocal synaptic connections with each other as
well as themselves (Fig. 1 A).

As pointed out in the introduction, empirical evidence
is most consistent with visual cortical gamma oscilla-
tions resulting from noise-driven fluctuations, and not
from sustained coherent oscillations (Burns et al., 2011,
2010; Kang et al., 2010; Xing et al., 2012). To model such
noise-driven oscillations using the SSN, as in (Hennequin
et al., 2018), we assumed the external input consists of
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two terms It = IDC + ηt , where IDC represents the feed-
forward stimulus drive to the network (by a steady time-
independent stimulus) and scales with the contrast of the
visual stimulus, and ηt represents the stochastic noise in-
put to the network. This input noise could be a�ributed to
several sources, including sources that are (biologically)
external or internal to V1. External noise can originate
upstream in the lateral geniculate nucleus (LGN) of tha-
lamus, or in feedback from higher areas. Internally gener-
ated noise results from the network’s own irregular spik-
ing (not explicitly modeled) which survives mean-field
averaging as a finite-size e�ect (given the finite size of the
implicitly-modeled spiking neuron sub-populations un-
derlying the SSN’s units). For parsimony, we assumed
noise statistics are independent of stimuli, and thus of
contrast.1 More specifically, we assumed that noise in-
puts to di�erent neurons are independent, and each com-
ponent is temporally correlated pink noise with a corre-
lation time on the order of a few milliseconds (our main
results are robust to changes in this parameter, as well as
to the introduction of input noise correlation across neu-
rons).

For the first results shown in Fig. 1, we directly simulated
the stochastic Eq. (1). Fig. 1C (dots) shows the average fir-
ing rates found in these simulations, and their contrast-
dependence. The LFP signal is thought to result primar-
ily from inputs to pyramidal cells, as they have relatively
large dipole moments (Einevoll et al., 2013); we therefore
took the net input to the E sub-population to represent
the LFP signal. Fig. 1B shows examples of raw simu-
lated LFP traces for di�erent stimulus contrasts. For high
enough contrast (including all nonzero contrasts shown),
the LFP signal exhibits oscillatory behavior. These oscilla-
tions can be studied via their power-spectra (Fig. 1E, dots;
see Methods). As Fig. 1F shows, the peak frequencies of
the simulated LFP power-spectra shi� to higher frequen-
cies with increasing contrast. The two-population SSN
model thus captures the empirically observed contrast
dependence of gamma peak frequency (compare Fig. 1F
with Fig. 1-I of Ray and Maunsell 2010 reproduced here
as Fig. 1D).

To understand this behavior be�er, we employed a lin-
earization scheme for calculating the LFP power-spectra.
The linearization method allows for faster numerical

computation of the LFP power-spectra, without the need
to simulate the stochastic system Eq. (1). More impor-
tantly, the linearized framework allows for analytical ap-
proximations and insights, which as we show below, elu-
cidate the mechanism underlying the contrast depen-
dence of the gamma peak. We thus explain this approxi-
mation with some detail here (see Methods for further de-
tails). In any stimulus condition (corresponding to a given
IDC), we first find the network’s steady state in the ab-
sence of noise, by numerically solving the noise-free ver-
sion of Eq. (1) (without linearization). The corresponding
fixed-point equations can be simplified if we sum them
over α, and define h∗ ≡

∑
α h

α
∗ and IDC ≡

∑
α I

α
DC . We

then arrive at the same fixed-point equation for h∗ as in
the original SSN (Ahmadian et al., 2013):

h∗ = WF (h∗) + IDC . (3)

A�er numerically finding h∗, we then expand Eq. (1) to
first order in the noise and noise-drive deviations around
the fixed point, δhαt ≡ hαt − hα∗ , to obtain

τα
dδhαt
dt

= −δhαt + W̃α
∑
β

δhβt + ηαt (4)

where we defined

W̃α ≡ Wα diag
(
F ′(h∗)

)
, (5)

where F ′(h∗) denotes the vector of gains (slopes) of the
I/O functions of di�erent neurons at the operating point
h∗ (see the red tangent lines in Fig. 1 A inset), and diag
constructs a diagonal matrix from the vector. As we ex-
plain in the next subsection, the neural gains and their
dependence on the operating point rates (themselves de-
pendent on the stimulus IαDC , via Eq. (3)) play a crucial role
in the contrast dependence of gamma peak frequency.

Technically, the linear approximation is valid for small
noise strengths, but we found that for the noise levels
that elicited fluctuations with realistic sizes, the approx-
imation was very good. As shown in Fig. 1E-F, the LFP
power-spectra and their peak frequencies obtained using
the linear approximation agree very well with those esti-
mated from the direct stochastic simulations of Eq. (1).
The firing rates of E and I units at the fixed-point so-
lution Eq. (3) also provide a very good approximation

1 Internally generated spiking noise is expected to have power that grows with the emerging firing rates in the network, as in a Poisson
process. Since we are not interested in modeling changes in the gamma power –as opposed to peak frequency– with increasing contrast, we
ignored this scaling, as it would not qualitatively a�ect the contrast dependence of peak frequency.
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Figure 1. Contrast dependence of the gamma peak frequency in the 2-population model. A: Schematic of the 2-
population Stabilized Supralinear Network (SSN). Excitatory (E ) connections end in a circle; inhibitory (I ) connections
end in a line. Each unit represents a sub-population of V1 neurons of the corresponding E /I type. Both receive inputs
from the stimulus, as well as noise input. Inset: The rectified power-law Input/Output transfer function of SSN units
(black). Red lines indicate the slope of the I/O function at particular locations. B: Local field potential (LFP) traces,
modeled as total net input to the E unit, from the stochastic model simulations under four di�erent stimulus contrasts
(c): 0% (black) equivalent to no stimulus or spontaneous activity, 25% (blue), 50% (green), 100% (red). The same color
scheme for stimulus contrast is used throughout the paper. (Note that we take stimulus strength (input firing rate) to
be proportional to contrast, although in reality it is monotonic but sublinear in contrast, Kaplan et al., 1987). C: Mean
firing rates of the excitatory (orange) and inhibitory (cyan) units as a function of contrast, from the stochastic simu-
lations (dots) and the noise-free approximation of the fixed point, Eq. (3) (stars). Note that the dots and stars closely
overlap. D: Reproduction of figure 1I from (Ray and Maunsell, 2010) showing the average of experimentally measured
LFP power-spectra in Macaque V1. The inset shows the dependence of gamma peak frequency on the contrast of the
grating stimulus covering the recording site’s receptive field. E: LFP power-spectra for c = 0%, 25%, 50%, 100% (black,
blue, green, and red curves, respectively) calculated from the noise-driven stochastic SSN simulations (dots), or using
the linearized approximation (solid lines). F: Gamma peak frequency as a function of contrast, obtained from power-
spectra calculated using stochastic simulations (dots and dashed line) or the linearized approximation (stars and solid
line).

to their mean steady-state rates, at di�erent contrasts,
as obtained from direct stochastic simulations of Eq. (1)
(Fig. 1C). Below, we will thus calculate all power-spectra

using the computationally faster noise-free determina-
tion of the fixed point, Eq. (3), and the linear approxima-
tion, Eq. (4), instead of stochastic simulations of Eq. (1).
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Figure 2. Robustness of the contrast-dependence of gamma peak frequency to network parameter variations. One
thousand 2-population SSN’s were simulated with randomly sampled parameters (but conditioned on producing stable
noise-free steady-states), across wide biologically plausible ranges. All histograms show counts of sampled networks;
the total numbers (n’s) vary across di�erent histograms, as di�erent subsets of network produced the corresponding
feature or value in the corresponding condition (e.g., a gamma peak at 50% contrast). Panels A-E and F-J show results for
the columnar and non-columnar models, respectively. A: Distributions of the excitatory unit’s firing rate in response to
25%, 50%, and 100% contrast stimuli (blue, green, red), plo�ed on a logarithmic scale. 100% of networks shown across
all contrasts. B: Distributions of the gamma peak frequencies at di�erent stimulus contrasts. The n’s (upper right)
give the number of networks with a power spectrum peak above 20 Hz. C: Distributions of the gamma peak widths at
di�erent stimulus contrasts. D: Same as panel A, but for the inhibitory unit. E: Distributions of the change in gamma
peak-frequency normalized by the change in stimulus contrast, either 25% and 50% (cyan) or 50% and 100% (yellow).
F: Same as panel E, but for gamma peak-width.

Robustness of the two-population model

To demonstrate that the SSN robustly produces the con-
trast dependence of gamma peak frequency, we simu-
lated 1000 di�erent instances of the 2-population net-
work with parameters randomly drawn from wide but bi-
ologically plausible ranges. The sampled parameters were
the weights of the connections between the two units
(E → I, I → E) and their self-connections (E → E ,
I → I), the relative strength of input to the excitatory
and inhibitory units, and the NMDA fraction of excita-
tory synaptic weights.

The parameters were sampled independently except for
the enforcement of two inequality constraints which pre-
vious work has shown to be necessary for ensuring the

network’s dynamical stability without strong inhibition
domination leading to very weak excitatory activity (see
Methods for details). The parameter set was also rejected
if the resulting SSN did not reach a stable fixed point for
all studied stimulus conditions (this corresponds to our
modelling choice to have the SSN in a damped oscillation
regime).

The majority of randomly sampled models produced
steady-state excitatory and inhibitory firing rates that
were within biologically plausible ranges, across all con-
trasts (Fig. 2A and D). Furthermore, many two-population
networks produced peak frequencies that were in the
gamma band (30 - 80 Hz) for all contrast conditions,
though some produced peaks at higher frequencies for
the highest contrasts (Fig. 2 B). The distributions also
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shi� towards higher frequencies with increasing contrast,
suggesting that the two-population SSN is indeed able to
robustly reproduce the contrast dependence of gamma
peak frequency. To demonstrate this more directly, we
show the distributions of the changes in peak frequency
normalized by the change in contrast in Fig. 2E. No sam-
pled network produced a negative change in peak fre-
quency with increasing stimulus contrast. As a further
corroboration of our model, we also studied how the
width of the gamma peak changed with increasing con-
trast. While (Jia et al., 2013; Ray and Maunsell, 2010) did
not quantify changes in their gamma peak width with
increasing contrast, their results suggest that no signifi-
cant systematic change in width was observed (Fig. 1 D).
Similarly, in our two-population network, changes in the
half-width of the gamma peak are relatively small, and
the direction of change can be positive or negative with
similar probability (Fig. 2 F).

Mechanism underlying the contrast dependence of
gamma peak frequency

As we will now show, the SSN sheds light on the mecha-
nism underlying the contrast dependence of the gamma
peak, and specifically pins it to the increasing neuronal
gain with increasing neuronal activity, due to the expan-
sive, supralinear nature of the neuronal I/O transfer func-
tion. This also explains the robustness of the e�ect to
changes in connectivity and external input parameters as
demonstrated in the previous subsection.

In the linearized approximation, the LFP power-spectrum
(see Eqs. (24)–(26) in Methods) can be expressed in terms
of the so-called Jacobian matrix, i.e. the matrix of cou-
plings of the dynamical variables, δhαt , in the linear sys-
tem Eq. (4); thus, for a network of N neurons, the Jaco-
bian is a 3N × 3N matrix, or 6× 6 in the two-population
model (see Eqn. 33 for the explicit form). The existence
of damped oscillations and the value of their frequency
(which is the resonance frequency manifesting as a peak
in the power-spectrum) are in turn determined by the
existence of complex eigenvalue of the Jacobian matrix,
and the value of their imaginary parts. Previously, the
eigenvalues of the Jacobian for a standard E-I firing rate
network, without di�erent synaptic current types, were
analyzed by Tsodyks et al. 1997, and conditions for emer-
gence of (damped or sustained) oscillations were found.
In Appendix 1, we show that, given the slowness of
NMDA receptors relative to gamma timescales, the ef-

fect of NMDA receptors on the relevant complex eigen-
values of the Jacobian can be safely ignored, and as a re-
sult, only two (out of 6) eigenvalues of the resulting Ja-
cobian can become complex (and thus able to create a
gamma peak). Moreover, this pair (which we denote by
λ±) correspond to the two eigenvalues of a standard E-
I rate model (Tsodyks et al., 1997) whose E and I neural
time-constants are given, respectively, by the AMPA and
GABA decay times:

2λ± = γE (W̃EE − 1)− γI(W̃II + 1)

±
√[

γE (W̃EE − 1) + γI(W̃II + 1)
]2 − 4γEγIW̃EIW̃IE (6)

where γE = τ−1
AMPA and γI = τ−1

GABA. Here we defined

W̃ab ≡ WabF
′(h∗a) (a, b ∈ {E , I}), (7)

where Wab ≡
∑

αW
α
ab is the total synaptic weight from

unit b to unit a, and (as in Eq. (5)) F ′(h∗a) is the gain of unit
a, i.e. the slope of its I/O function, at the operating point
set by the stimulus. We refer to W̃ab as e�ective synaptic
connection weights. Unlike raw synaptic weights, these
e�ective weights are modulated by the neural gains, and
thereby by the activity levels in the steady state operating
point, which is in turn controlled by the stimulus.

As mentioned, (damped or sustained) oscillations emerge
when the above eigenvalues are complex (in which case
λ+ and λ− are complex conjugates). This happens when
the expression under the radical in Eqn. 6 is negative, i.e.

4γEγIW̃EIW̃IE >
[
γE (W̃EE − 1) + γI(W̃II + 1)

]2
. (8)

�alitatively, the le� hand side of the above inequality is
a measure of the strength of the e�ective negative feed-
back between the E and I sub-populations, while the right
hand size is a measure of the positive feedback in the net-
work (arising from the network’s recurrent excitation and
disinhibition). Oscillations thus emerge when the nega-
tive feedback loop between E and I is su�iciently strong,
in the precise sense of Eqn. 8.

During spontaneous activity (when the external input is
zero or very weak), the rates of both E and I popula-
tions are very small. This means that the spontaneous
activity operating point sits near the rectification of the
neuronal I/O transfer functions where the neural gains
are very low (Fig. 1A le�). Thus in the spontaneous ac-
tivity state, the dimensionless e�ective connections are
relatively small. In the limit of W̃ab → 0, the le� hand
side of Eqn. 8 goes to zero, while its right side goes to
(γI − γE )2 which is generically positive; hence the in-
equality is not satisfied. This shows that the spontaneous
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Figure 3. The supralinear nature of the neural transfer function can explain the contrast dependence of gamma fre-
quency. A: Schematic diagrams of the 2-population SSN (see Fig. 1A) receiving a low (le�) or high (right) contrast
stimulus. The thickness of connection lines represents the strength of the corresponding e�ective connection weight,
which is the product of the anatomical weight and the input/ouput gain of the presynaptic neuron. The gain is the slope
(red line) of the neural supralinear transfer function (black curve), shown inside the circles representing the E (orange)
and I (cyan) units. A resonance frequency exists when the e�ective “negative feedback” (gray arrow enlcosing a minus
sign) dominates the e�ective “positive feedback” (gray arrows enclosing positive signs), in the sense of the inequality
Eq. (8). As the stimulus drive (c) increases (right panel), the neurons’ firing rates at the network’s operating point in-
crease. As the transfer function is supralinear, this translates to higher neural gains and stronger e�ective connections.
When a resonance frequency already exists at the lower contrast, this strengthening of e�ective recurrent connections
leads to an increase in the gamma peak frequency, approximately given by the imaginary part of the linearized SSN’s
complex eigenvalue, Eq. (6). B: The eigenvalue formula (9) provides an excellent approximation to the gamma peak fre-
quency across sampled networks and contrasts simulated in Fig. 2; correlation coe�icient = 0.98 (p < 10−6), for all data
points combined across 25% (blue), 50% (green), and 100% (red) contrasts. C: The negative feedback loop contribution
to the resonance frequency (Eq. (9) with the second term under the square root neglected) overestimates gamma peak
frequency but is positively and significantly correlated with it; correlation coe�icient = 0.67 (p < 10−6).

activity state generically does not exhibit oscillations, in
agreement with lack of empirical observation of gamma
oscillation during spontaneous activity.

On the other hand, when condition Eqn. 8 does hold, the
frequency of the oscillations are given by the imaginary

part of the eigenvalues, i.e.

resonance frequency = (9)
1

2π

√
γEγIW̃EIW̃IE −

[
γE (W̃EE − 1)/2 + γI(W̃II + 1)/2

]2
(the division by 2π is because the eigenvalue imaginary
parts give the angular frequency). As we will discuss fur-
ther below, the resonance frequency (or approximately

9



the gamma peak frequency [Fig. 3B]) thus depends on
the e�ective connections weights and is thus modulated
by the neural gains. (Note, however, that the scale or or-
der of magnitude of this frequency is set by γE and γI ,
i.e., by the decay times of AMPA and GABA, as the e�ec-
tive connection weights are dimensionless and cannot de-
termine the dimensionful scale of the gamma frequency;
ignoring the “positive feedback” contribution in Eq. (9),
we find resonance frequency ∝ √γEγI/(2π), which for
τAMPA ∼ τGABA ∼ 4-6 ms, is on the order of 30-40 Hz.)

Equation (9) provides the insight into the contrast de-
pendence of the gamma peak frequency (see Fig. 3). As
contrasts increase the fixed-point firing rates increase
(Fig. 1C). Because the SSN I/O transfer function is non-
saturating and supralinear, as the rates increase the gains
(i.e., the slope of the I/O transfer functions) of the E and I
cells are also guaranteed to increase (Fig. 3A right vs. le�).
The increase in the gains leads in turn to the strengthen-
ing of the e�ective connection weights, Eq. (7), and there-
fore of the network’s negative E-I feedback loop. When
Eq. (8) is satisfied, a rough approximation (Fig. 3B vs. C) to
the resonance frequency is obtained by ignoring the pos-
itive feedback contribution (the second term under the
square root in Eq. (9)). With only the negative feedback
contribution retained, it is clear that an increase in neu-
ral gains leads to an increase in the resonance frequency
(the precise conditions for this to occur are given in Ap-
pendix 2 below). Thus as contrast increases, we expect
the gamma peak in the LFP power-spectrum to move to
higher frequencies, due to increasing neural gains and ef-
fective connectivity as dictated by the supralinear neural
I/O transfer function.

Retinotopic SSN

We next investigated whether the SSN can account for
the locality of contrast dependence of gamma peak fre-
quency, when V1 receives a stimulus with a spatially
varying contrast profile. To this end, we expanded our
network from two units representing global E and I pop-
ulations to many units that are retinotopically organized.
We thus model the cortex as a two-dimensional grid that
has an E and I sub-population (corresponding to SSN
units) at each grid location, corresponding to a cortical
column (Fig. 4A). In the retinotopic SSN, the stimulus in-
put can vary across the network: each column can receive
a di�erent input proportional to the contrast within its
receptive field. We presented this network with uniform-

contrast grating stimuli of various sizes and contrasts (the
stimulus in Fig. 4A), as well as a Gabor stimulus (Fig. 4E),
similar to the one used in Ray and Maunsell 2010, with a
contrast profile that decays smoothly with deviation from
the stimulus center according to a Gaussian profile (see
Eq. (54)). Gamma peak frequency shows only a weak de-
pendence on stimulus orientation (Jia et al., 2013), possi-
bly due to the averaging of LFP over an area larger than
the size of orientation minicolumns. To keep our model
parsimonious and computationally more tractable, we
thus chose the size of our cortical columns to be roughly
half the hypercolumn size in Macaque, and neglected the
orientation map structure, and the dependence of exter-
nal inputs and horizontal connections on preferred orien-
tation.

We wish to study the trade-o� in this model between
capturing surround suppression of firing rates and cap-
turing the local dependence of gamma peak frequency,
and asked whether parameter choices exist for which the
model can capture both of these e�ects. In particular, we
studied the e�ect of the spatial profile of the horizontal
recurrent connections between and within di�erent cor-
tical columns on this trade-o�. In one extreme, we can
consider a network in which long-range connections be-
tween di�erent columns are very weak, and thus corti-
cal columns are weakly interacting and can be approx-
imated by independent two-population networks which
were studied above (Figs. 1–1). In this case, the frequency
of the gamma resonance in each column depends only
on the gains and activity levels in that column, which
are in turn set by the feedforward input to that column,
controlled by the local stimulus contrast. Therefore a
network with such a connectivity structure would triv-
ially reproduce the local contrast-dependence of gamma
peak frequency. However, due to lack of strong inter-
columnar interactions, such a network would fail to pro-
duce significant surround suppression of firing rates. In
the other extreme, inter-columnar strengths are strong
and, importantly, have a smooth fall-o� (e.g. an exponen-
tial fall) with growing distance between pre- and post-
synaptic columns; this is the case in most cortical net-
work models, including the SSN model of (Rubin et al.,
2015) that captures surround suppression and its vari-
ous contrast-dependencies. However, as we will show
below, in such networks, when horizontal connections
are strong enough to produce surround suppression, the
gamma peak frequency is typically shared across all ac-
tivated columns, regardless of the spatial contrast pro-
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Figure 4. A retinotopically-structured SSN model of V1, with a boost to local, intra-columnar excitatory connectivity,
exhibits a local contrast-dependence of gamma peak frequency, as well as robust surround suppression of firing rates.
A: Schematic of the model’s retinotopic grid, horizontal connectivity, and stimulus inputs. Each cortical column has an
excitatory and an inhibitory sub-population (orange and cyan balls) which receive feedforward inputs (green arrows)
from the visual stimulus, here a grating, according to the column’s retinotopic location. Orange lines show horizontal
connections projecting from two E units; note boost to local connectivity represented by larger central connection. In-
hibitory connections (cyan lines) only targeted the same column, to a very good approximation. B: LFP power-spectra
in the center column evoked by flat gratings of contrasts 25% (blue), 50% (green), and 100% (red). C: Gamma peak
frequency as a function of flat grating contrast. Note that peaks were defined as local maxima of the relative power-
spectrum, i.e., the point-wise ratio of the absolute power-spectrum (as shown in B), to the power-spectrum at zero
contrast; see Methods. D: Firing rate responses of E (orange) and I (cyan) center sub-populations as a function of
grating contrast. E: The Gabor stimulus with non-uniform contrast (falling o� from center according to a Gaussian).
The colored circles show the five di�erent cortical locations (retinotopically mapped to the visual field) probed by the
LFP “electrodes”. The orange probe was at the center and the distance between adjacent probe locations was 0.2◦ of
visual angle (corresponding to 0.4 mm in V1, the width of the model columns). F: LFP power-spectra evoked by the
Gabor stimulus at di�erent probe locations (legend shows the probe distances from the Gabor center). G: Gamma
peak frequency of the power-spectra at increasing distance from the Gabor center. The golden curve is the prediction
for peak frequency in the displaced probe location based on the Gabor contrast in that location and the gamma peak
frequency obtained in the center location for the flat grating of the same contrast. The predictor’s fit to actual Gabor
frequencies is very tight (R2 = 0.98), exhibiting local gamma contrast dependence. H: Size tuning curves of the center
E (orange) and I (cyan) subpopulations, at full contrast. E and I firing rates vary non-monotonically with grating size
and exhibit surround suppression (suppression indices were 0.33 and 0.15, respectively.

file of the stimulus, and thus this connectivity structure
cannot capture the local contrast-dependence of gamma
peak frequency. Indeed, as shown below, within this class
of networks (i.e., those with a smooth spatial connec-
tivity profile), we did not find connectivity parameters
(controlling the range and strength of horizontal connec-
tions) for which the network could produce significant

surround suppression and yet capture the local contrast-
dependence of gamma (see Fig. 5 and 6).

We then asked whether connectivity structures which in-
volve a sum of strong, spatially smooth long-range con-
nections and an additional boost to local, intra-columnar
connectivity could produce both of these e�ects. In such
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a structure, the connection strength between two units
first undergoes a sharp drop when the distance between
the units exceeds the width of a column, and then falls
o� smoothly over a longer distance, possibly ranging over
several columns. This modification can be thought of as
adding a local, intra-columnar-only component to a con-
nectivity profile with smooth fall-o�. Specifically, we let
the excitatory horizontal connections in our model have
such a form. Denoting the strength of connection from
the unit of type b at location y to the unit of type a at
location x by Wx,a|y,b (with a, b ∈ {E , I}), we thus chose:

Wx,a|y,E ∝ λa,Eδx,y + (1− λa,E )e
−‖x−y‖

σa,E (a ∈ {E , I}),
(10)

where δx,y (the local component) is the Kronecker delta: 1
when x = y and zero otherwise. TheλE ,E andλI,E parame-
ters lie between 0 and 1, and interpolate between the two
extremes of connectivity structure: for λa,E = 0 the hori-
zontal connectivity profile has only one spatial scale and
falls o� smoothly with distance, while for λa,E = 1 con-
nectivity is purely local and intra-columnar. The orange
lines in Fig. 4A show examples of this connectivity profile.
Below we will refer to horizontal excitatory connectivity
structures with nonzero (and significant) λa,E as colum-
nar, and to those with λa,E = 0 as non-columnar; we will
also refer to SSN models with these connectivity types
as “columnar” and “non-columnar” models or networks,
respectively, for short. As in previous work (Rubin et al.,
2015), we chose a smooth gaussian profile for inhibitory
connections (see Eq. (51)), with a relatively short range
(see the cyan lines in Fig. 4A); thus inhibitory projections
essentially only targeted the source column.

In Fig. 4B-H, we show the behavior of firing rates and
the gamma peak in an example columnar network (with
λE ,E = 0.72 and λI,E = 0.70) in response to di�erent stim-
uli. We first presented this network with flat gratings
of varying sizes and contrasts, and measured the LFP
power-spectrum and the firing rate responses of the E
and I sub-populations at the “center” column, i.e., at the
retinotopic location on which the grating was centered.
Firing rates of center E and I both increased with con-
trast (Fig. 4D), and for large enough gratings, we verified
that the gamma peak frequency also increases with in-
creasing contrast (Fig. 4B-C), matching the results of the
reduced 2-population model and our previously built in-
tuition. To study surround suppression, we formed the
so-called size-tuning curve of the center E and I popula-
tions, based on their responses to full-contrast flat grat-

ings of di�erent sizes (Fig. 4H). Both E and I responses
showed surround suppression: the response first grows
but then drops with increasing grating size. The center
E sub-population had a suppression index (SI, see Meth-
ods for the definition; SI= 0 is no suppression, = 1 is
complete suppression) of 0.33 consistent with biologically
reported values of suppression indices (Gieselmann and
Thiele, 2008).

To study the locality of contrast dependence, we modeled
the experiment of Ray and Maunsell 2010, and presented
this network with a Gabor stimulus, which has spatially
varying contrast with a gaussian profile. We then com-
puted the LFP spectrum at five locations (“columns”) of
increasing distance from the center of the Gabor stimu-
lus (the colored squares in Fig. 4E) with the farthest one
lying at 0.8 degrees of visual angle from the Gabor cen-
ter (compare with the Gabor’s σ which was 0.5◦ as in
Ray and Maunsell 2010). The LFP power-spectra at all
locations are shown in Fig. 4F. As seen, the gamma peak
moves to lower frequencies with increasing distance from
the Gabor center, which is accompanied by a decrease in
the local contrast (i.e. the contrast of the Gabor stimu-
lus at the receptive field location of the recording site).
To quantify the locality of this contrast dependence, we
again followed Ray and Maunsell 2010, by comparing the
actual peak frequency at location x with a prediction that
solely depended on the local contrast, c(x), of the Gabor
stimulus at x. The prediction was the peak frequency of
gamma recorded at the center location, when the net-
work is presented with a large flat grating of (uniform)
contrast equal to c(x). We found that the prediction was
in very close agreement with the actual peak frequen-
cies at all distances (Fig. 4F). As a measure of the local-
ity of gamma contrast-dependence, we used the corre-
sponding coe�icient of determination, R2, which quan-
tifies the agreement between the predicted and actual
peak frequencies. (By definition, R2 = 1 − SSE

Var , where
SSE denotes the sum of squared di�erences between the
predicted and the actual gamma peak frequencies, and
Var denotes the variance of the la�er; R2 is thus bounded
above by 1, which is a�ained when the prediction per-
fectly matches the actual data.) In the example shown in
Fig. 4F, we found R2 = 0.98.

To investigate whether the above behavior did or did
not require fine tuning of network parameters, we sim-
ulated 2000 networks with randomly picked parameters.
There were 11 parameters in total, characterising the
strengths and ranges of horizontal connections, including
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Figure 5. Behaviour of retinotopic V1 models with and without boosted intra-columnar recurrent excitatory connec-
tivity (columnar vs. non-columnar models, respectively) across their parameter space. We simulated 2000 di�erent
networks of each type with parameters (11 in total) randomly sampled across wide, biologically plausible ranges. All
histograms show counts of sampled networks; the total number of samples vary across histograms, as only subsets of
networks exhibited the corresponding feature with a value in the shown range. Panels A-E and F-J show results for the
columnar and non-columnar models, respectively. A& F: Distributions of gamma peak frequency, recorded at stimulus
center, for di�erent contrasts of the uniform grating (histograms for 25%, 50%, and 100% contrasts in blue, green and
red, respectively). D & I: Distributions of the change in gamma peak-frequency normalized by the change in grating
contrast, changing from 25% to 50% (cyan) or from 50% to 100% (yellow). B & G: Distributions of the suppression index
for the center E (orange) and I (cyan) sub-populations. C & H: The distributions of the coe�icient of variation R2, as a
measure of the locality of gamma peak contrast dependence. The R2 quantifies the goodness-of-fit of predicted gamma
peak frequency based on local Gabor contrast (see Fig. 4G showing such a fit in an example network). E & J: The joint
distribution of R2 and the suppression index of the center E sub-population. Only a very small minority of sampled
non-columnar networks produced R2 > −1 and R2 > 0 to appear in H and ; hence the small n’s, corresponding to 1.4%
and 1% of samples, respectively
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λa,E , the strength of feedforward connections, and the ra-
tio of NMDA to AMPA in recurrent excitatory synapses.
These parameters were were picked randomly and in-
dependently (except for the enforcement of three in-
equality constraints, similar to the samplings of the two-
population model in Fig. 2) across wide ranges of values
consistent with biological estimates; see Methods and Ta-
ble 1 for details. Again, similar to the sampling of the
two-population model, sampled networks which failed
to reach a stable steady-state in any stimulus condition
were discarded.

The vast majority of sampled networks produced bio-
logically plausible center excitatory and inhibitory firing
rates which increased with increasing contrast (E and I
firing rates did not exceed 100 Hz in, respectively, 90%
and 81% of networks). The majority of networks pro-
duced surround suppression in excitatory (70% of sam-
ples) and inhibitory (53% of samples) populations, with
many networks yielding strong suppression in both pop-
ulations (Fig. 5B). In addition, in response to grating stim-
uli (with uniform contrast profile), many networks pro-
duced gamma-band peaks in the LFP power spectrum
that moved upward in frequency with increasing contrast
(Fig. 5A and D; the number of networks yielding gamma
peak for each nonzero contrast is denoted in panel A). Fi-
nally, for each network, we again quantified the locality
of contrast dependence of peak frequency, using the R2

coe�icient for the match between peak frequencies ob-
tained at di�erent recording locations on the Gabor stim-
ulus, and their predictions based on the local Gabor con-
trast and the peak frequency obtained using the flat grat-
ing with that contrast. A sizable fraction of networks re-
sulted in a high R2 signifying local contrast-dependence
of gamma peak frequency (Fig. 5C). Moreover, many of
these networks exhibited strong surround suppression as
well (Fig. 5E). Sixty six networks (4.2 % of samples) yielded
an R2 > 0.8 and SIE > 0.25.

In sum, the columnar model, which emphasizes the intra-
columnar excitatory connectivity (Eq. (10)), can robustly
exhibit strong surround suppression in conjunction with
gamma peak frequencies controlled by the local contrast,
as observed empirically, without requiring a fine tuning
of parameters.

Retinotopic SSNs with non-columnar excitatory
connectivity do not account for local contrast de-
pendence of gamma frequency.

To further show the importance of a boost in intra-
columnar excitatory connectivity for obtaining local
contrast dependence despite strong surround suppres-
sion, we next sampled retinotopic SSN models without
this structure in horizontal connections (“non-columnar”
model). In these models horizontal excitatory connec-
tions fall o� smoothly over distance between the source
and target columns (corresponding to λa,E = 0 in the
notation of Eq. (10)). We found that while many sam-
pled non-columnar models exhibited strong surround
suppression (on average stronger than in the sampled
columnar models) none of the sampled models exhibited
gamma peak frequencies with su�iciently local contrast-
dependence.

The sampled non-columnar networks robustly exhibited
surround suppression which was strong in a large frac-
tion of these networks, and, especially in excitatory units,
was on average stronger than in the sampled colum-
nar models (Fig. 5G vs. B). Many networks produced
LFP power-spectrum peaks in the gamma band with fre-
quency increasing with contrast (Fig. 5F and I), but sam-
pled networks with these properties were about half as
common as in the case of the columnar model (Fig. 5A
and D). Moreover, when presented with the Gabor stim-
ulus, we found that the contrast dependence of gamma
peak frequency in the vast majority of non-columnar net-
works was far from local, and the same peak frequency
was shared across most of the retinotopic region stim-
ulated by the Gabor stimulus (see the power spectra of
an example sampled non-columnar network in Fig. 6A-
B). Only 1% of sampled non-columnar networks exhib-
ited a positive R2 (our measure of local contrast depen-
dence), compared to 15% of columnar networks (Fig. 5H
and J). Only 4 non-columnar networks (out of 2000 sam-
pled networks) exhibited an R2 > 0.6 in conjunction
with any degree of surround suppression (positive sup-
pression index) of E firing rates (Fig. 5 J). However, three
of these networks which had the highest R2’s exhibited
non-biological gamma-band power spectra, featuring ei-
ther multiple gamma peaks or unrealistically sharp ones.
The fourth network produced realistic gamma peaks and
achieved an R2 = 0.61; the LFP power spectra, gamma fre-
quency contrast dependence, and size tuning curves for
this example network are shown in Fig. 6.
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Figure 6. Gamma peak contrast dependence and surround suppression in an example non-columnar retinotopic SSN
without a boost in intra-columnar E-connections. Panel descriptions are the same as for the right three columns in
Fig. 4. Among 2000 sampled non-columnar networks, this network was the best sample we found in terms of capturing
the local contrast dependence of gamma peak frequency (subject to having a nonzero suppression index, and producing
realistic non-multiple gamma peaks in the LFP power-spectra which are not unbiologically sharp). However, as seen
in panel D, this network only yielded an R2 of 0.61, as an index of locality for the gamma peak’s contrast dependence,
and gamma peak frequency stayed roughly constant over most of the area covered by the Gabor stimulus (panel B).

We conclude that the non-columnar model class cannot
robustly exhibit both surround suppression of firing rates
and local contrast dependence of gamma peak frequency.

Mechanism underlying the local contrast depen-
dence of gamma peak frequency in the columnar
SSN

We can understand the mechanism underlying the local
contrast dependence of gamma frequency in the colum-
nar model, and its failure in the non-columnar model,
by looking at the spatial profile of the normal oscillatory
modes of these networks. Normal modes are the eigen-
vectors of the Jacobian matrix, the e�ective connectivity
matrix of the linearized network introduced before Eq. (6),
and normal oscillatory modes are the Jacobian eigenvec-
tors with complex eigenvalues. (As described above, the
oscillation frequency is given by the imaginary part of the
eigenvalue, and thus we are particularly interested in the
eigenvectors of eigenvalues with imaginary part in the

gamma band.) The Jacobian is dependent on the operat-
ing point of the linearization, which is in turn set by the
stimulus. The relevant stimulus condition for us is the
Gabor stimulus, or more generally a stimulus with non-
uniform contrast.

As we discussed above, gamma peak frequency would
be trivially determined by local contrast in a network
with only local connectivity (corresponding to λaE = 1
in our model) and disconnected cortical columns. The
disconnected columns act like the 2-population model of
the first part, and can oscillate independently of other
columns by a frequency set by the operating point of that
column, which is in turn set by the stimulus input to that
column and thus the local contrast. In such a network, all
Jacobian eigenvectors are completely localized spatially
at a single column. Since the mode is localized, its eigen-
value and hence its natural frequency, are entirely deter-
mined by the stimulus contrast over that column.
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Figure 7. Mechanism of local contrast dependence in the retinotopic SSN with columnar structure and its failure in
the non-columnar model. The le� and right columns correspond to the columnar (retinotopic SSN with boosted local,
intra-columnar excitatory connectivity) and non-columnar (retinotopic SSN without the boost in local connectivity)
example networks in Fig. 4 and Fig. 6, respectively. A: Top: relative LFP power spectra recorded at di�erent probe loca-
tions in the Gabor stimulus condition (see 4E; same colors are used here to denote the di�erent LFP probes). Relative
power spectrum is the pointwise ratio of the evoked power spectrum (evoked by the Gabor stimulus) to the sponta-
neous power spectrum in the absence of visual stimulus (the absolute power spectrum for the same conditions was
given in Fig. 4F). Bo�om: the eigenvalue spectrum in the complex plane, with real and imaginary axis exchanged so
that the imaginary axis aligns with the frequency axis on top (eigenvalues are also scaled by 1/(2π) to correspond to
non-angular frequency). The eigenvalues were weighted separately for each probe, according to Eq. 11, and the eigen-
value with the highest weight was circled with the probe’s color (see 4E). This eigenvalue contributes the strongest peak
to the power spectrum at that probe’s location. B: Each sub-panel corresponds to one of the probe locations (as indi-
cated by the frame color), and plots the absolute value of the highest-weight eigenvector (more precisely, the function
|Ra(x)| defined in Eq. (37)) over cortical space. Thus, this is the eigenvector corresponding to the circled eigenvalue in
panel A, bo�om. The λ-rank in each sub-panel is the order (counting from 0) of the eigenvalue according to decreasing
imaginary part, which is the eigen-mode’s natural frequency. The green dot in each sub-panel shows the location of
the LFP probe. C-D: Same as A and B, but for the retinotopic SSN model with no columnar structure.

By contrast, in the model with long-range connections
and λaE = 0 (the non-columnar model) the eigenvectors

can spatially cover a large region of retinotopic space,
and lead to coherent and synchronous oscillations at the
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same frequency (set by that mode’s eigenvalue) across
many columns. To see this, consider the case of a stim-
ulus with uniform contrast. Such a stimulus does not
break the network’s translational symmetry (since re-
current connections do not care about absolute location,
and only depend on relative distance of pre- and post-
synaptic columns). Due to this symmetry all eigenmodes
are completely delocalized and have (sinusoidal) plane
wave spatial profiles extending over the entire retinotopic
space. A non-uniform stimulus does break the trans-
lational symmetry and leads to relative localization of
eigenvectors. However, the scale of this localization is set
by the scale over which the stimulus contrast varies ap-
preciably. If this variation is smooth, the eigenvectors can
still cover a large region. In the case of the Gabor stim-
ulus, the σ of the Gaussian profile of this stimulus sets
this length scale. Thus eigenvectors tend to cover much
of the space covered by the stimulus. This can be seen
in Fig. 7D showing oscillatory eigenvectors of an exam-
ple non-columnar network, for modes which maximally
contribute to the gamma peaks recorded at di�erent lo-
cations. When such an eigenvector has a complex oscilla-
tory eigenvalue (which is su�iciently close to the imagi-
nary axis so that its oscillations are not strongly damped),
it will give rise to coherent gamma oscillations across the
area covered by the stimulus, at the same frequency set by
the mode’s eigenvalue. The corresponding peak will thus
appear at the same frequency in the power-spectra of
the LFP recorded across this space, despite smooth varia-
tions in local contrast (Fig. 7C top). This mechanism thus
breaks the local contrast dependence of peak frequency.

Our columnar model, via its parameters λaE , interpolates
between disconnected networks and the kind of network
just discussed. With a su�icient boost of intra-columnar
connectivity (i.e., with su�iciently large λaE ) the eigen-
vectors of this model become approximately localized,
not to single columns, but to a small number of columns
receiving similar stimulus contrasts. This is shown in
an example columnar network in Fig. 7B, showing dif-
ferent Jacobian eigenvectors (all for the Gabor stimulus
condition) which are approximately localized at di�er-
ent locations. Even those eigenvectors that are relatively
more spread, tend to extend over rings encircling the Ga-
bor’s center, and thus cover an area receiving the same
contrast. The eigenvalue and natural frequency of such
modes is thus largely controlled by that contrast value:

modes that do not extend to a given location do not con-
tribute to the power-spectrum recorded at that location,
while modes that are localized nearby only “see” the local
contrast.

This observation further explains the typical shape of the
eigenvalue spectrum observed in columnar networks. As
seen in Fig. 7A (bo�om) the eigenvalue spectrum consists
of a near-continuum of eigenvalues extending along the
imaginary axis. Eigenvalues with higher (lower) imag-
inary parts (i.e., the corresponding modes’ natural fre-
quency) have eigenvectors localized at regions of higher
(lower) contrast. In this way, eigenvalues with di�erent
imaginary parts roughly correspond to di�erent locations
that have di�erent local contrasts, with imaginary part
decreasing with local contrast. By contrast, oscillatory
eigenvalues in non-columnar networks, especially eigen-
values near the imaginary axis within the gamma band,
tend to be isolated (Fig. 7C bo�om shows this in an exam-
ple non-columnar network); the corresponding mode can
not be associated with a given location or contrast. In-
deed since the eigenvectors of these modes extend over
many columns receiving varying contrasts, the mode’s
eigenvalue and oscillation frequency are not determined
by stimulus contrast at any single column, but rather by
the entire spatial profile of contrast, in a complex manner.

The above qualitative discussion can be made quantita-
tive using the linearized approximation. In Methods (see
Eqs. (39) and (41)), we derive an expression for the power-
spectrum at a location as a sum of individual contribu-
tions by di�erent eigenmodes.2 As show in Eq. (41), mode
a, with eigenvalue λa, contributes a peak to the power
spectrum located at frequency given by the imaginary
part of λa (the mode’s natural frequency). The half-width
of the peak is given by minus the real part of the eigen-
value, which we denote by γa. Finally, the peak amplitude
is proportional to

|Ra(x)|2

γ2
a

, (11)

whereRa(x) is the component of the mode’s right eigen-
vector at column x’s E population (a�er summing the
components corresponding to di�erent synaptic recep-
tors; see Eq. (37)). Thus this peak only leaves an imprint
on the LFP power-spectrum in locations where this eigen-
vector has appreciable components. The amplitude is also
inversely related to the square of the peak’s half-width,

2The sum also includes terms that are contributions of di�erent pairs of modes, which, depending on whether the two modes interfere con-
structively or destructively, can be positive or negative (see Eq. (43)); we did not take into account pair contributions in weighting of eigenmodes.
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γa, which by definition measures the distance between
the eigenvalue and the imaginary axis. Thus eigenvalues
closer to this axis produce stronger and sharper peaks,
which appear in the LFP spectrum probed at location x,
only if the corresponding right eigenvector has strong (ex-
citatory) components there. In Fig. 7, separately for each
of the five LFP probe locations on the Gabor stimulus, we
picked the mode with the highest amplitude as defined
in Eq. (11). The corresponding eigenvalue is circled in the
eigenvalue spectrum plots (bo�om plots in Fig. 7A and C
for the columnar and non-columnar example models, re-
spectively). In Fig. 7B and D we then plot the correspond-
ing eigenvectors; more precisely, we have plo�ed |Ra(x)|
which, according to Eq. (11), controls the strength of a
mode’s contribution at di�erent locations x. As observed,
in the non-columnar model, the eigenvectors spread over
the entire region covered by the Gabor stimulus. Thus the
same mode makes the strongest contribution to the LFP
spectra (shown in Fig. 7A and C, top plots) at all probe
locations, except for the one that is farthest from the Ga-
bor center. Since this best mode is shared across the first
four probe locations, its fixed eigenvalue (Fig. 7C, bo�om
plot) determines the location of the power-spectrum peak
(Fig. 7C, top plot) in all but the farthest probe location.

By contrast, in the columnar model, eigenvectors cover
a considerably smaller area within which contrast varies
li�le. As a result, each mode only a�ects the LFP power
spectrum locally, and when the probe moves, the best
mode changes quickly, as if the best eigenvector “moves”
with the probe (Fig. 7B). In turn, the corresponding best
eigenvalues also move to lower frequencies along the
imaginary axis (Fig. 7A, top), as the probe moves farther
from the Gabor center, according to the local contrast
“seen” by their eigenvector.

Inter-columnar projections in the columnar model are
nevertheless su�iciently strong to be able to give rise to
strong surround suppression, as evidenced above. It is
also worth noting that for large gratings that give rise
to surround suppression, the contrast is uniform over
a broad area, in which case even the eigenvectors of
the columnar model tend to cover a broad area (math-
ematically, this is because when stimulated with a uni-
form stimulus, the columnar model also has approximate
translational invariance, and therefore its eigenvectors
tend towards delocalized approximate plane waves).

In summary, the columnar model can balance the require-
ments for locality of gamma contrast dependence and

strong surround suppression, because of the intermedi-
ate spatial spread of its eigenvectors, which tend to cover
relatively small areas with roughly uniform contrast.

Discussion

In this work we have shown that the expanded SSN
is able to robustly display the contrast dependence of
gamma peak frequency in both a two-population and a
retinotopic network. The retinotopic model successfully
balances the trade-o� in horizontal connection strength
such that both the local contrast dependence of the
gamma peak frequency and the surround suppression
of firing rates are observed robustly. In order to cap-
ture gamma oscillations using the SSN, we expanded the
model beyond an E-I network to a varied synaptic net-
work model. Crucially, the SSN account sheds light on
the mechanism underlying the contrast dependence of
gamma peak frequency and points to the key role of the
non-saturating and expansive neural transfer function,
observed empirically (Finn et al., 2007; Priebe and Ferster,
2005), in giving rise to this e�ect.

Finding the power-spectra using the linearization to
Eqn. 1, helped us make analytic simplifications. From
these simplifications, we gained insights on how the SSN
captures the gamma contrast dependence. As contrast
increases, firing rates increase, which, due to the supra-
linear neural transfer function of SSN, lead to increasing
neural gains. This in turn strengthens e�ective connec-
tivity, leading to faster oscillations. Moreover, by find-
ing the power-spectra via linearization, we were able to
rapidly compute power-spectra which allowed for exten-
sive explorations of the model’s parameter space.

In this work, for simplicity, we assumed an instantaneous
I/O function between net synaptic input (

∑
β hβ) and the

output rate. This is based on the approximations dis-
cussed in (Fourcaud and Brunel, 2002), which is valid
when the fast synaptic filtering time-constants (τAMPA

and τGABA) are much smaller than the neuronal mem-
brane time-constants. However, our framework can eas-
ily be generalized beyond this approximation by using
the full neuronal linear response filter obtained from the
Fokker-Planck treatment of (Fourcaud and Brunel, 2002).
The main change due to such a modification would be to
render the neural gains frequency dependent. We expect
this dependence to be weak because we are in the regime
of fast synaptic filtering as compared to the neuronal
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membrane time constant, and so we expect the trans-
fer function to be approximately instantaneous (Four-
caud and Brunel, 2002). Therefore we do not expect that
including the full neuronal linear response filter would
change our qualitative results.

As we have shown, retinotopic SSN networks account
for the co-existence of the local contrast dependence of
gamma peak frequency and strong surround suppression
by balancing long-range horizontal connection strength
that decreases exponentially with distance with an addi-
tional strengthening of very local excitatory connections.
One possible scenario is that the additional local con-
nection strength is needed to compensate for the possi-
ble e�ects of the model’s coarse retinotopic grid which
might have distorted the functional e�ects of a connec-
tivity profile with a smooth, single-scale fall-o�, with-
out a local boost. Alternatively, this may represent a
measurable increase in connection strength above an ex-
ponential function of distance at short distances, below
∼ 200−400µm. Indeed, it has been previously noted that
anatomical findings on the spatial profile of horizontal
connections in the macaque cortex point to such a mix-
ture of short-range or local and long-range connections,
with the local component not extending beyond 400µm
(the size of our model’s columns) (Voges et al., 2010).

It is notable that, in modeling surround suppression in
V1, Obeid and Miller (2021) also found that they needed
to increase the central weight strengths, relative to an
exponential fall-o� of strength on a grid, for their SSN
model to account for two other observations. These ob-
servations were the decrease in inhibition received by a
cell when it is surround suppressed (Adesnik, 2017; Ozeki
et al., 2009), and the fact that the strongest surround sup-
pression occurs when surround orientation matches cen-
ter orientation, even if the center orientation is not the
cell’s preferred orientation (Shushruth et al., 2012; Tro�
and Born, 2015). Other phenomena they addressed could
be explained by their SSN model with or without this
extra local strength. We believe that other visual corti-
cal phenomena previously addressed with the SSN model
(Adesnik, 2017; Hennequin et al., 2018; Liu et al., 2018; Ru-
bin et al., 2015) would not be a�ected by such boosting,
as the mechanisms inferred behind them appear indepen-
dent of these connectivity details.

Recently some evidence of enhanced connectivity at very
short distances (∼ 20µm) has been found in mouse V1
(Oldenburg et al., 2022). Optogenetic stimulation of ten

cells found excitation of nearby cells only at such short
distances from one of the stimulated cells, with suppres-
sion at longer distances. In a model, this required an extra
component of connectivity that decreased with distance
on a very short length scale, in addition to one with a
longer length scale. As they point out, such extra local
strength might account for the observation that preferred
orientations in mouse visual cortex are correlated on a
similar very short length scale (Kondo et al., 2016). It will
be interesting to see if evidence of such a short-length-
scale component of connectivity is evident in monkeys,
where the local contrast dependence of gamma was mea-
sured, and conversely to see if mice show similar local
contrast dependence of gamma.

Methods

Stabilized supralinear network (SSN) with di�erent
synaptic receptor types

In its original form, the Stabilized Supralinear Network
(SSN) is a firing rate network of excitatory and inhibitory
neurons that have a supralinear rectified power-law in-
put/output (I/O) transfer function:

F (h) = k[h]n+ (12)

where n > 1 and [h]+ ≡ max(0, h) denotes rectification
of h. The dynamics can either be formulated in terms of
the inputs to the units (Hennequin et al., 2018) or in terms
of their output firing rates (Ahmadian et al., 2013; Rubin
et al., 2015). Here we adopt the former case for which the
dynamical state of the network, in a network of N neu-
rons, is given by the N-dimensional vector of inputs vvt ,
which evolves according to the dynamical system

T
dht

dt
+ ht = WF (ht ) + It . (13)

Here, I is the external input vector, T = diag(τ1, … , τN )
is the diagonal matrix of synaptic time constants, and f
acts element-wise. Finally, W is the N × N matrix of re-
current connection weights between the units in the net-
work. This connectivty matrix observes Dale’s law, mean-
ing the sign of the weight does not change over columns.
If we order neurons such that excitatory neurons appear
first and inhibitory neurons second, this matrix takes the
form

W =
(
WEE −WEI

WIE −WII

)
(14)

where WXY (X ,Y ∈ [E , I]) have non-negative elements.
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The above model does not take into account the dis-
tinct dynamics of currents through di�erent synaptic
receptor channels: AMPA, GABAA (henceforth GABA),
and NMDA. Only the fast receptors, AMPA and GABA,
have timescales relevant to gamma band oscillations.
These receptors have very fast rise times, which cor-
respond to frequencies much higher than the gamma
band. We therefore ignored the rise times of all re-
ceptors. With this assumption, upon arrival of an ac-
tion potential in a pre-synaptic terminal at time t = 0,
the post-synaptic current through receptor channel α
(α ∈ {A = AMPA, G = GABA, N = NMDA}) with decay
time τα is given by w θ(t)

τα
e−t/τα where θ(t) is the Heaviside

step function and wα is the contribution of receptor α to
the synaptic weight. This is the impulse response solution
to the di�erential equation τα dhα

dt +hα = wδ(t), where δ(t)
is the Dirac delta representing the spike at time t = 0. In
the mean-field firing rate treatment, the delta function is
averaged and is replaced by a smooth rate function r(t).
Extending this to cover post-synaptic currents from all
synapses into all neurons we obtain the equation

τα
dhαt
dt

+ hαt = Wαrt (15)

where rt and hα are N-dimensional vectors of the neu-
rons’ firings rates and input currents of type α, respec-
tively, and Wα are N × N matrices containing the con-
tribution of receptor type α to the recurrent synaptic
weights. If we add an external input to the right side (be-
fore filtering by the synaptic receptors), we obtain Eq. (1).
Since AMPA and NMDA only contribute to excitatory
synapses, and GABA only to inhibitory ones, in general
the Wα have the following block structure

WA =
(
WA

EE 0
WA

IE 0

)
, WN =

(
WN

EE 0
WN

IE 0

)
,

WG =
(

0 −WG
EI

0 −WG
II

)
. (16)

For simplicity, we further assumed that the fraction of
NMDA and AMPA is the same in all excitatory synapses.
In this case all Wα can be wri�en in terms of the four
blocks of the full connectivity matrix W ≡

∑
αW

α, in-
troduced in Eq. (14):

WN =
ρN

1− ρN
WA = ρN

(
WEE 0
WIE 0

)
,

WG =
(

0 −WEI

0 −WII

)
. (17)

where the scalar ρN is the fractional contribution of
NMDA to excitatory synaptic weights.

As noted in Results, to close the system of equations for
the dynamical variables hαt , we have to relate the out-
put rate of a neuron to its total input current, htotal

t =∑
β h

β
t . In general, the relationship between the total

input and the firing rate of a neuron, or the mean fir-
ing rate of a population of statistically equivalent neu-
rons, is nonlinear and dynamical, meaning the rate at
a given instant depends on the preceding history of in-
put, and not just on the instantaneous input. However,
as shown by (Brunel et al., 2001; Fourcaud and Brunel,
2002), the firing rate of spiking neurons receiving low-
pass filtered noise with fast auto-correlation timescales
is approximately a function of the instantaneous input.
The fast filtered noise is exactly what irregular spiking of
the spiking network generates a�er synaptic filtering (as
in Eq. (15)) by the fast AMPA and GABA receptors. (While
our rate model does not explicitly model (irregular) spik-
ing, it can be thought of as a mean-field approximation
to a spiking network where each SSN unit or “neuron”
represents a sub-population of spiking neurons, with the
rate of that unit representing the average firing rate of the
underlying spiking population.) We thus use this static
approximation to the I/O transfer function and assume
the firing rates of our model units are given by Eq. (2):

rt = F (htotal
t ) = F

(∑
β h

β
t

)
, where F (.) is the rectified

power-law function of Eq. (12).

We do note, however, that this static approximation can
be li�ed in a straightforward manner at the level of our
linearized approximation (which underlies our qualita-
tive understanding of the contrast-dependence of the
gamma peak): upon linearization, a dynamic neural
transfer function would result in the neural gain variables
(see Eq. (22)) becoming frequency-dependent gain filters.
However, as long as those gain filters are feature-less over
the gamma band, their frequency dependence would not
qualitatively a�ect the location of the gamma peak and
its stimulus dependence. Thus we expect that the static
I/O approximation will not alter our qualitative results.

Modelling of gamma oscillations and local field po-
tential

As discussed in the introduction and Results, gamma os-
cillations are most consistent with noise-driven damped
oscillations. We thus assumed the external input con-
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sisted of a time-independent term representing the feed-
forward drive due to a static stimulus, and dynamical
noise:

Iαt = IαDC + ηαt . (18)

Given that external inputs to cortex are excitatory and
only fast noise is relevant to gamma oscillations we as-
sumed that ηαt was only nonzero for α =AMPA. We
took ηt to have independent and identically distributed
components (with zero mean) across our sub-population
units, and took it to be temporally pink noise, with fast
correlation time, τcorr:

〈ηi(t1) ηj(t2)〉 = δijσ2
ηe
− |t1−t2|

τcorr . (19)

We assume that local field potential (LFP) recordings pre-
dominantly measure the inputs to the surrounding pyra-
midal neurons (Einevoll et al., 2013), and thus in our
model use the current input into our excitatory units as
the surrogate for LFP. More precisely we take the LFP
signal at location x to be the total current input, htotal,
averaged over the E neurons within a given distance of
x (the average could be weighted with weights that de-
crease with distance). This can be wri�en as the inner
product of htotal with an x-dependent weight vector:

LFPt (x) ∝ ex · htotal =
∑
α

ex · hα, (20)

where the weight vector ex only has nonzero components
for E neurons that are within a given radius of location x.
In particular, in the two-population model which lacks
retinotopy ex ≡ e = (1, 0)T. In the retinotopic model,
we assumed that the spatial range of the LFP recording
does not exceed the half-width of our the model’s cortical
columns (0.2 mm), and therefore we took ex to be a one-
hot vector with the component for the E unit at location
x equal to one, and the rest zero.

LFP power-spectra in the linearized approximation

In order to study the power-spectra, and gain intu-
ition about them, we linearized the dynamics around
the noise-free fixed point. (Recall that we are modelling
gamma as noise-driven damped oscillations, i.e. the net-
work is in a regime where without noise it reaches a stable
fixed point.) As shown in Results, the fixed point satisfies
Eq. (3). The linear approximation consists of a first-order
Taylor expansion in powers of the noise, ηαt , and noise-
driven fluctuations, δhαt ≡ hαt − hα∗ , around the stable

fixed point. (Note that while the fixed point equation
only involves the total current h∗ ≡

∑
α h

α
∗ , a�er nu-

merically finding h∗, we can obtain the fixed-point value
of the receptor-specific currents via hα∗ = WαF (h∗)+ IαDC .)
This yields

τα
dδhαt
dt

= −δhα + WαΦ
∑
β

δhβt + ηt , (21)

where we defined the gain matrix Φ as a diagonal matrix
whose diagonal entries are

Φii ≡ F ′(hi∗) = nk[hi∗]n−1
+ = nk

1
n r1− 1

n
i∗ . (22)

Taking the Fourier transform of (21), and solving for
δh̃αf (the Fourier transform of δhαt , where f denotes fre-
quency) we obtain

δh̃αf =
∑
β

Gαβ(f ) η̃ β
f , (23)

where the Green’s function, Gαβh (f ), is given by

[G(f )−1]αβ ≡ (−i2πf τα + 1)δαβIN×N −WαΦ. (24)

where IN×N is the identity matrix.

Since, by Eq. (20), the LFP is a linear function of hα,
the power-spectrum of LFP can be wri�en in terms of
the cross-spectrum matrix of δh̃αf , which we denote by

Cαβh (f ). Specifically

PLFP(f ; x) =
∑
α,β

eT
x C

αβ
h (f ) ex. (25)

Using Eq. (23) and Cαβh (f ) ∝ 〈δh̃αf δh̃
β†
f 〉 we have

Cαβh (f ) =
∑
γ,δ

Gαγ(f )Cγδη (f )Gβδ(f )†,

= GαA(f )CAA
η (f )GβA(f )†. (26)

Here, Cγεη (f ) is the cross-spectrum of the input noise, and
in the second line we relied on our assumption that noise
only enters the AMPA channel, and thus only γ = δ =
A ≡ AMPA contribute to the sums. From Eq. (19), we
have CA,A

η (f ) = Pnoise(f ) IN×N , where

Pnoise(f ) =
2τcorrσ

2
η

|1− 2πiτcorrf |2
(27)

is the power-spectrum of noise. We finally obtain

PLFP(f ; x) = Pnoise(f ) ‖ux(f )‖2, (28)

where we defined

ux(f ) ≡
∑
β

GβA(f )†ex. (29)
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Definition of suppression index, and gamma peak
frequency and width

Suppression index was based on the size tuning curve,
r(R), of the center E or I units, measured for gratings of
100% contrast. It was defined by

SI = 1− r(Rmax)
maxR r(R)

(30)

where R is the grating radius, r(R) is the size tuning curve,
and Rmax is the maximum grating radius used.

As in Ray and Maunsell 2010, we identified the gamma
peak frequency with the frequency (within the extended
gamma band 10-100 Hz) at which the di�erence of the
evoked (c > 0) and spontaneous (c = 0) LFP log-spectra
(or the ratio of those spectra) is maximized:

fpeak(c) = arg max
f

[log PLFP(f ; c)− log PLFP(f ; c = 0)] .

(31)
As a measure of gamma peak width (or half-width) at
contrast c, we used the half-width at half-height of the
relative power spectrum PLFP(f ;c)

PLFP(f ;0) .

The eigen-decomposition of the LFP power-
spectrum

The linearized dynamics of Eq. (4) can be wri�en in terms
of the Jacobian matrix, J as

dδhαt
dt

=
∑
β

Jαβ δh
β
t (32)

where

Jαβ ≡ τ−1
α (−δαβIN×N + WαΦ). (33)

(with α,β ∈ {AMPA, GABA, NMDA}) is the (α,β) block
(an N × N matrix) of the full 3N × 3N Jacobian matrix.
The normal modes of this linear system correspond to
eigenvectors of the Jacobian, which evolve in time ac-
cording to eλt which for λ = γ + iω0 with real γ and
ω0 can be wri�en e−|γ|t (cosωt + i sinωt) (we used the
fact that stability require that the eigenvalue real part,
γ, is negative). We thus see that this mode oscillates at
(angular) frequency ω0 = Imλ, and decays at the rate
given by |γ| = −Reλ. (For brevity, in this section we
will use the angular frequency ω = 2πf instead of f .)
Comparison of Eq. (4) and Eq. (24) shows that the inverse
Green’s function can be wri�en in terms of the Jacobian

as [G(f )−1]αβ = τα(−iωI− J)αβ .Defining a diagonal ma-
trix T with the first, second, and last third of its diagonal
elements given by τAMPA , τGABA and τNMDA , respectively. We
can write

G(f ) = (−iωI− J)−1T−1 (34)

We start by rewriting the Green’s function in terms of the
eigen-decomposition of the Jacobian J = VΛV−1, where Λ
is the diagonal matrix of eigenvalues, λa, and V is a ma-
trix with columns given by corresponding (right) eigen-
vectors. Equivalently we can write J =

∑
a λaRaLa, where

the right eigenvectors Ra are the columns of V and the
le� eigenvectors, La, are the rows of V−1. Using this de-
composition we obtain

G(f ) =
∑
a

1
−iω − λa

RaLaT−1. (35)

We can then rewrite Eq. (29) as

ux(f )† = τ−1
AMPA

∑
a

Ra(x)
−iω − λa

LA
a (36)

where LA
a is the row-vector formed by the AMPA compo-

nents of La, and we defined

Ra(x) =
∑
β

[Ra]β,E ,x (37)

namely, the (possibly complex) scalar function Ra(x) is
the E , x component (component on E subpopulation at
column x) of the right-eigenvector a�er summing over re-
ceptor indices. Here we have assumed that the LFP probe
is completely local and reflects total current (hence the
sum over β) into E (pyramidal) neurons of the recorded
column x. The limitation to AMPA components of the le�
eigenvectors, on the other hand, reflects our assumption
that external noise is entering only via AMPA receptors.
Substituting in Eq. (28), we then obtain

PLFP(f ; x)
Pnoise(f )

= ‖ux(f )‖2 (38)

=
∑
a,b

Aab(x)
1

iω − λ∗b
1

−iω − λa
(39)

where we defined

Aab(x) = τ−2
AMPA
〈LAb , LAa 〉 R∗b(x)Ra(x) (40)

and 〈LAb , LAa 〉 = LAa (LAb )† is the Hermitian inner product of
the two le� eigenvectors, within the AMPA subspace. The
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key factor here is R∗b(x)Ra(x) which determines the x-
dependence and can a�ect the local dependence of power
spectrum on information at point x.

Equations 39–40 constitute our main result here. They ex-
press the ratio of LFP to noise power spectrum as a sum
of contributions by pairs of eigen-modes, and contribu-
tions by individual eigen-modes (the la�er corresponding
to the diagonal summands with a = b).

In particular, the individual contribution of mode a is

Pa(f ; x) ≡ Aaa(x)
| − iω − λa|2

=
Aaa(x)

γ2
a + (ω − ωa)2 , (41)

where γa andωa are minus the real and imaginary compo-
nents of λa, and f = ω

2π . This contribution is a Lorentzian
function that peak at the natural frequency frequency ωa

and has half-width γa. The amplitude of this peak is given
by

Aaa(x)
γ2
a
∝ |Ra(x)|2

γ2
a

, (42)

where we used Eq. (40). This amplitude is thus propor-
tional to |Ra(x)|2, i.e., the squared absolute value of the
corresponding right eigenvector component at location x.
It is also inversely proportional to the squared half-width
which measures the distance between the eigenvalue and
the imaginary axis. Thus eigenvalues closer to this axis
produce stronger and sharper peaks, which appear in the
LFP spectrum probed at location x if the corresponding
right eigenvector has strong components at that location.

The sum in Eq. (39) also contains terms each of which can
be interpreted as the contribution of a pair of (distinct)
modes. When the le�-eigenvectors of di�erent modes are
orthogonal (according to the inner product defined a�er
Eq. (40), which corresponds to the orthogonality of the
AMPA components of the vectors under the common in-
ner product) these contributions vanish. More generally,
the contribution of the pair (a, b) can be wri�en as (mak-
ing use of Aba(x) = Aab(x)∗)

Pab(f ; x) ≡ 2ReAab(x)
1

iω − λ∗b
1

−iω − λa
(43)

= 2
NR
ab(f ; x) + N I

ab(f ; x)
Dab(f )

, (44)

where we defined

Dab(f ) = ( γ2
a + (ω − ωa)2 ) ( γ2

b + (ω − ωb)2 ), (45)

and

NR
ab(f ; x) = Re[Aab(x)] ( γaγb + (ω − ωa)(ω − ωb) ), (46)

N I
ab(f ; x) = Im[Aab(x)] ( γa(ω − ωb)− γb(ω − ωa) ). (47)

Alternatively, the pair contribution Pab(f ; x) is given
by the product of the individual contributions Pa(f ; x)
and Pb(f ; x), with a correction factor given by
2A−1

aa (x)A−1
bb (x) (NR

ab(f ; x) + N I
ab(f ; x)).

Parametrization of the two-population and retino-
topic models

The 2x2 (full) connectivity matrix of the 2-population
model is parametrized by the four parameters Jab (a, b ∈
{E , I}) as follows:

W =
(
JEE −JEI
JIE −JII

)
. (48)

The DC stimulus input corresponds to feedforward exci-
tatory inputs from LGN and targets both sub-populations
only via the AMPA channel (since this input is time-
independent, its distribution across NMDA and AMPA
channels is actually of no consequence). As in the original
SSN, we assumed this input scales linearly with contrast,
c, but with varying relative strengths to the E and I cap-
tured by the two parameters gE and gI :

IDC = c
(
gE
gI

)
. (49)

In the retinotopic model we index the neurons by their
E/I type and retinotopic location. We parametrized the
recurrent connection weight from the pre-synaptic E and
I units at location y to the type a (a ∈ [E , I]) post-synaptic
unit at location x by

Wx,a|y,E ∝ Ja,E

[
λa,E δx,y + (1− λa,E )e

− ‖x−y‖
σa,E

]
(50)

for excitatory projections, and

Wx,a|y,I ∝ Ja,I e
− (x−y)2

2σ2
a,I , (51)

for inhibitory ones. We are using proportionality instead
of equal signs in the above equations, because a normal-
ization was done such that the total weight of each type
received by a unit was given by the corresponding Jab (in-
dependent of theσab andλab parameters). Recurrent con-
nectivity was thus parametrized by the 2x2 matrices Jab
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and σab, the two λa,E , and the NMDA fraction, ρN , 11 pa-
rameters in total. For σII and σEI we used values (see Ta-
ble 1) small compared to the distance between neighbor-
ing columns (0.4 mm) so that inhibition was e�ectively
local (i.e., intra-columnar); we did not vary σII and σEI
across our randomly sampled networks.

We modeled the external stimulus input to the type a unit
at x by

IDCa,x = c ga Ix (a ∈ {E , I}). (52)

where gE and gI reflect the relative strengths of feed-
forward connections received by V1’s excitatory and in-
hibitory networks, and Ix captures the spatial profile of
the visual stimulus. For a grating of radius rgrat we mod-
eled the spatial contrast profile, Ix, as

Ix =
1

1 + e
‖x‖−rgrat

wRF

. (53)

The parameter wRF smooths the edges of the grating (due
to feedforward filtering by receptive fields of width ∼
wRF). Note that for rgrat � wRF (which was true for most
grating sizes employed), local contrast is nearly uniform
under the support of the external input (except within a
“boundary layer” of width wRF near ‖x‖ = rgrat). For the
Gabor stimulus we have

Ix = e
− ‖x‖2

2σ2
Gabor . (54)

We took σGabor = 0.5◦, as in Ray and Maunsell 2010, and
the peak contrast (c in Eq. (52)) was always 100% for this
stimulus.

Model parameters and parameter sampling

See Table 1 below for the values of all parameters or pa-
rameter ranges for models used in di�erent figures. For
the models used in Figs. 1 and 4, we found their param-
eters (Jab and ga which are shared in both figures, and
σa,E and λa,E for Fig. 4) using random sampling (as fur-
ther described below) searching for networks that would
exhibit the local contrast-dependence of the gamma peak
together with strong surround suppression.

For studying the robustness of the contrast dependence
of gamma frequency in the two-population model in
Fig. 2, and in the case of the retinotopic SSN with a
smooth fall-o� of excitatory horizontal connectivity in
Fig. 6, we sampled parameters from wide biologically

plausible ranges. To determine these ranges for the recur-
rent and feedforward weights, we first made rough bio-
logical estimates for the recurrent E and I weights (i.e., JaE
and JaI , respectively, for a ∈ {E , I}), as well as the (exci-
tatory) feedforward weights (gE and gI); we denote these
estimates by J∗E , J∗I and g∗, respectively. We then indepen-
dently varied parameters controlling each type of weight
between 0.5 to 1.5 times those estimates (see Table 1 for
the actual values).

To come up with the mid-range estimates, J∗E , J∗I and g∗,
we relied on empirical estimates of the e�ect of recurrent
and feedforward inputs on the membrane voltage of a
post-synaptic neuron. Note that while Jab (and thus J∗E
and J∗I ), have dimensions of voltage (such that the recur-
rent input Wr has our units of current), ga (and thus g∗)
have dimensions of current. In our model, we measured
the currents in units of mV/s, by including an implicit
factor of membrane capacitance in them. The membrane
potential response to a unit current is normally given by
the membrane resistance, which in our units becomes
the membrane time constant, which we take to be τm =
0.01 s. So to obtain an estimate of g∗ from voltage mea-
surements, we need to divide the estimate by τm = 0.01 s.

We estimated the e�ect of feedforward inputs on mem-
brane voltage using measurements in cats and mice
(Chung and Ferster, 1998; Ferster et al., 1996; Finn et al.,
2007; Li et al., 2013; Lien and Scanziani, 2013) (see Ah-
madian and Miller 2021 for a review and discussion of
these measurements). Based on these measurements, we
estimate the maximum feedforward input, achieved for
100% contrast to be on the order of the rest to thresh-
old distance, which is around 20 mV (Constantinople and
Bruno, 2013). This yields g∗ ∼ τ−1

m 20 mV/(100%) = 20
mV/s per 1% contrast. The Jab parameters measure the
total synaptic weight, which biologically is given by a
unitary excitatory or inhibitory (depending on b) post-
synaptic potential (EPSP or IPSP) times the total num-
ber of pre-synaptic V1 neurons, Kb, of type b. Based on
anatomical measurements for sensory cortex (reviewed
in Ahmadian and Miller 2021) we estimate the e�ective
KE to be ∼ 400 (with a wide margin of uncertainty). And
based on electrophysiological measurements we assume
the median EPSP amplitude to be ∼ 0.5 mV. This yields
J∗E = 0.5× 400 = 200 mV. For unitary IPSP amplitude, we
used the same value of 0.5 mV, but assumed half as many
inhibitory pre-synaptic inputs, due to the smaller number
of inhibitory cells in the circuit. We thus took J∗I = J∗E/2.
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In Fig. 5, the four extra parameters controlling the spatial
profile of excitatory horizontal connections in the retino-
topic SSN were additionally sampled randomly as well.
These parameters are λEE and λIE quantifying the intra-
columnar excess connectivity, and σIE and σEE quanti-
fying the length-scale (range) of the long-range compo-
nents of excitatory recurrent connections. We sampled
the two σ’s uniformly between 150 µm and 600 µm. The
non-columnar model had λEE = λIE = 0, while for the
columnar model we sampled these uniformly from the
interval [0.25, 0.75].

Finally, we assumed that recurrent V1 excitatory
synapses are dominated by AMPA, rather than NMDA,
and therefore sampled ρN uniformly at random in the in-
terval [0.3, 0.5].

All parameters were sampled uniformly and indepen-
dently over their ranges, except for enforcement (by sam-
ple rejection) of three inequality constraints:

JEIJIE > JEE JIE ,

JIIgE > JEIgI ,

σIE > σEE .

Previous work has shown that the first inequality pro-
motes stability (almost a necessary condition) (Ahmadian
et al., 2013; van Vreeswijk and Sompolinsky, 1998), the
second inequality ensures that the network is not too
strongly inhibition-dominated such that excitatory rates
become too small (Ahmadian et al., 2013; van Vreeswijk
and Sompolinsky, 1998). The last inequality is necessary
for obtaining considerable surround suppression (Rubin
et al., 2015).
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Parameter Fig. 1 Figs. 2-3 Fig. 4 Fig. 5 Fig. S1 Unit Description

n 2 - power-law I/O exponent
k 0.0194 mV−2 ·ms power-law I/O pre-factor
τcorr 5 ms noise correlation time
τAMPA 5 ms AMPA decay time
τGABA 7 ms GABAA decay time
τNMDA 100 ms NMDA decay time
ρN 0.39 0 - 0.5 0.39 0.3 - 0.5 0.45 - NMDA share of excitation
JEE 124 100 - 300 124 100 - 300 165 mV total E→ E connection weight
JIE 116 100 - 300 116 100 - 300 123 mV total E→ I connection weight
JEI 103 50 - 150 103 50 - 150 114 mV total I→ E connection weight
JII 59.3 50 - 150 59.3 50 - 150 57.1 mV total I→ I connection weight
gE 21.9 10 - 30 21.9 10 - 30 21.7 mV/s E feedforward current per 1% contrast
gI 10.3 5 - 15 10.3 5 - 15 10.6 mV/s I feedforward current per 1% contrast
λEE - - 0.72 0.25 - 0.75† 0 - locality of E→ E connections
λIE - - 0.70 0.25 - 0.75† 0 - locality of E→ I connections
σEE - - 0.296 0.15 - 0.60 0.265 mm range of E→ E connections
σIE - - 0.554 0.15 - 0.60 0.294 mm range of E→ I connections
σEI - - 0.09 mm range of I→ E connections
σII - - 0.09 mm range of I→ I connections
Ncol 1 1 172 - number of cortical columns
L - - 6.4 mm retinotopic network width
∆x - - 0.4 mm cortical column width
M - - 2 mm/degrees cortical magnification factor
wRF - - 0.04◦ degrees grating input’s margin width
σGabor - - 0.5◦ degrees Gabor stimulus sigma

Table 1. Parameters of models used in di�erent figures. In figures 2, 3 and 5, parameters were sampled independently
and uniformly from the ranges given in the table, except for enforcing three inequality constraints (i.e., sampled pa-
rameter sets violating any of these inequalities were rejected). See the main text (Methods) for details. †: these were
the ranges for sampled λEE and λIE of the columnar model; these parameters were zero in the non-columnar model.

Appendix 1

Proof that the eigenvalue spectrum of a synaptic
model with only AMPA andGABA is the same as the
spectrum of an E/I rate model

Here we prove that the spectrum of a linearized synaptic
model without NMDA is the same as the spectrum of a
linearized E/I rate model, with the exchange τAMPA → τE
and τGABA → τI . This means that, in particular, the for-
mulae of (Tsodyks et al., 1997) for eigenvalues in a 2-
neuron/population model still hold for this model with
the above replacements.

We start by rewriting the inverse Green’s function, using
the Green’s function defined in Eq. (24), which we now

write in full matrix form. We will also start general, allow-
ing for q di�erent receptor types (we also write in terms
of the angular frequency ω = 2πf ).

G(ω)−1 = A−WΦP (55)

where we define

A := −iωT + I ∈ RqN×qN (56)

W :=


WA

WG

WN

...

 ∈ RqN×N (57)

P := IN×N ⊗ 1
T

q = (IN×N , IN×N , IN×N , …) ∈ RN×qN

(58)
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where T = diag(τs) ⊗ IN×N and τs ∈ R (in our case
τs = (τA, τG , τN ) or (τA, τG)), and 1T

q = (1, … , 1) ∈ Rq.

The eigenvalue spectrum correspond to values of z = −iω
which make the determinant of G(ω)−1 vanish. Noting
that the second term in Eq. (55) is rank-deficient (has at
most rank N , instead of full-rank qN), we make use of the
“matrix determinant lemma” to write:

det(G−1(ω)) = det(A) det(IN×N − PA−1WΦ) (59)

It is not hard to see that

PA−1 = (
IN×N

−iωτA + 1
,

IN×N
−iωτG + 1

,
IN×N

−iωτN + 1
, …) (60)

and therefore

PA−1W =
q∑
α=1

1
−iωτα + 1

Wα (61)

We now limit to q = 2 with only AMPA and GABA.

PA−1W =
1

−iωτA + 1
WA +

1
−iωτG + 1

WG = WÃ−1 (62)

where we have made use of the specific forms of WA and
WG (namely, that they have zero columns for inhibitory
and excitatory neurons, respectively) from Eq. (17), and
where we have defined

W =
∑
α

Wα ∈ RN×N (63)

Ã := zT̃ + IN×N (64)

with T̃ = diag(τ̃ ) ∈ RN×N where τ̃ = (τA, … , τG , …) ∈ RN

is the N-dimensional vector with first NE components
equal to τA and the last NI components equal to τG .
A�er identifying τA/G with τE/I , we thus see that T̃ is
the same as the T matrix of the r-model (which is N-
dimensional), as is W its connectivity matrix. Also noting
that (zT̃ + IN×N )−1 and Φ are both diagonal, we can com-
mute them in Eq. (62) to obtain:

det(G−1(ω)) = det(A) det(IN×N −WΦÃ−1) (65)

=
det(A)

det(Ã)
det(zT̃ + IN×N −WΦ) (66)

=
det(A)

det(Ã)
det(zT̃ + IN×N − ΦW ) (67)

(to get the last line, do a similarity transform with Φ, of
the matrix in the last determinant).

Now it is explicit that the zeros of the last determinant
factor are the eigenvalues of the N-dimensional r-system
(a�er τA/G ↔ τE/I identification).

The first factor, on the other hand, can be wri�en as:

det(A)

det(Ã)
=

(zτA + 1)N (zτG + 1)N

(zτA + 1)NE (zτG + 1)NI
= (zτA + 1)NI (zτG + 1)NE

(68)
So the spectrum also hasN additional real eigenvalues (in
addition to those of the r-model) with values −τ−1

A and
−τ−1

G , and multiplicities, NI and NE , respectively. (Thus
in total we have 2N eigenvalues as we should.)

In particular, all oscillatory/complex eigenvalues are ex-
actly those of the r-model in the no-NMDA case, which
in the 2-neuron case are given by the formulae in Tsodyks
et al. 1997.

Approximate statement about role of NMDA: We
consider two regimes for the e�ect of NMDA:

1. when |z| or ω are very small compared to the
NMDA time-constant: ω � τ−1

N .

2. when |z| or ω are very large compared to the
NMDA time-constant: ω � τ−1

N .

The first regime is relevant for DC response and DC
properties (such as surround suppression of steady-state
rates). The second regime is approximately valid for
gamma oscillations, thanks to the relatively high fre-
quency of those.

In regime 1, it is obvious that the breakdown of E weights
into the two types doesn’t have any e�ects, simply be-
cause (se�ing ω to 0) time-scales don’t play any role here.
So the parameter ρN makes no di�erence to fixed point
response properties.

In regime 2, looking at Eq. (61), we note that the prefac-
tor 1

−iωτα+1 for NMDA is very small and can be ignored.
This means that for high frequencies (e.g., approximately
frequencies around gamma) we can simply kill all NMDA
weights, and only consider the AMPA weight matrix, WA.
In particular, the model where WA ∝ WN , then the e�ect
of NMDA on the gamma peak is approximately equiva-
lent to reducing total excitatory weights (which all a�ect
DC properties) by a scalar factor (which in our formalism
is 1− ρN ) when it comes to gamma properties.
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Appendix 2

Theorems for the two-population model

We consider now the case of a two-neuron model with
one excitatory and one inhibitory neuron (the neurons in
all models of this article should be thought of as ”mean
field” neurons, each representing a statistically homoge-
nous population of neurons of excitatory or inhibitory
type), what we have here called the two-population
model. We will also assume no NMDA contribution (or
equivalently work in the very slow NMDA regime, and
replace all excitatory weights with their AMPA part, as
explained at the end of Appendix 1).

In this case the gamma peak frequency is closely approx-
imated by the imaginary part of the eigenvalues of the
Jacobian matrix:

J = −T−1 + T−1WΦ (69)

=
(
γE (−1 + WEEΦE ) −γEWEIΦI

γIWIEΦE γI(−1−WIIΦI)

)
(70)

where we defined γE ≡ τ−1
AMPA and γI ≡ τ−1

GABA. Not-
ing that the trace and determinant of J yield the sum and
product of the eigenvalues, respectively, we obtain the ex-
pression (see (Tsodyks et al., 1997))

2λ1,2 = γE (WEEΦE − 1)− γI(WIIΦI + 1)

±
√

[γE (WEEΦE − 1) + γI(WIIΦI + 1)]2 − 4γEγIWEIWIEΦEΦI

(71)

A gamma peak exists only if the expression under the
square root is negative, i.e.

4γEγIWEIWIEΦEΦI > [γE (WEEΦE − 1) + γI(WIIΦI + 1)]2,
(72)

in which case, for the gamma peak angular frequency ω0,
we (approximately) have

4ω2
0 = 4βEβIWEIWIE − (βEWEE + βIWII + γI − γE )2 (73)

where we defined βX := γXΦX for X ∈ {E , I}.

We will now obtain a simplified expression for the deriva-
tive ofω2

0 with respect to the contrast c, using the rectified

supralinear nonlinearity of the SSN. Using Φ∗ = nk
1
n r

1− 1
n

∗
(where r∗ is the firing rate at fixed point) we obtain

dβ∗
dc

=
n− 1
n

β∗
d ln r∗
dc

(74)

Then using Eq. (73), and defining

A := (βEWEE + βIWII + γI − γE ) (75)

and (· · · )′ := d(··· )
dc , we find:

n
n− 1

dω2
0

dc
= βEβIWEIWIE (ln rE + ln rI)′

− 2A
4

(
βEWEE (ln rE )′ + βIWII(ln rI)′

)
(76)

= ω2
0(ln rE + ln rI)′

+
1
2
A2
[

(ln rE )′ + (ln rI)′

2
−

∑
a wa(ln ra)′

γI − γE +
∑

a wa

]
(77)

where the sums are over a ∈ {E , I} and we defined

wa := βaWaa a ∈ {E , I} (78)

Analysis of the sign of dω2
0

dc :

Assuming that we are in the gamma oscillatory regime
(i.e., ω0 is real) and that the fixed point rates increase with
contrast, then from Eq. (77) we find that su�icient condi-
toin for dω2

0
dc > 0 is that the factor in the square brackets

in Eq. (77) is positive. In the solutions of SSN most rel-
evant to cortical biology, (ln rI)′ tends to be larger than
(ln rE )′ (because excitatory rates tend to saturate or su-
persaturate earlier). We thus consider two extreme cases:
(ln rE )′ = (ln rI)′ and (ln rE )′ = 0.

In the first case, the bracket becomes (ln rI)′
[
1−

∑
a wa

γI−γE+
∑

a wa

]
=

(ln rI)′
γI−γE

γI−γE+
∑

a wa
, which is positive as long as γI > γE

(which is unfortunately not the case for GABA and
AMPA).

In the second case, the bracket factor becomes
(ln rI)′

γI−γE+
∑

a wa−2wI

2(γI−γE+
∑

a wa) = (ln rI)′
γI−γE+wE−wI

2(γI−γE+
∑

a wa) . This is posi-
tive (as long as the denominator is positive, which is true
as long as γI > γE ) if

wE − γE + γI > wI (79)

But the stability of the fixed point dictates that the ex-
pression on first line of Eq. (71) (the real part of the eigen-
values) has to be negative and thus

wI > wE − γE − γI . (80)
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