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ABSTRACT

Understanding how neural dynamics give rise to behaviour is one of the most
fundamental questions in systems neuroscience. To achieve this, a common ap-
proach is to record neural populations in behaving animals, and model these data
as emanating from a latent dynamical system whose state trajectories can then be
related back to behavioural observations via some form of decoding. As record-
ings are typically performed in localized circuits that form only a part of the wider
implicated network, it is important to simultaneously learn the local dynamics
and infer any unobserved external input that might drive them. Here, we intro-
duce iLQR-VAE, a control-based approach to variational inference in nonlinear
dynamical systems, capable of learning both latent dynamics, initial conditions,
and ongoing external inputs. As in recent deep learning approaches, our method
is based on an input-driven sequential variational autoencoder (VAE). The main
novelty lies in the use of the powerful iterative linear quadratic regulator algorithm
(iLQR) in the recognition model. Optimization of the standard evidence lower-
bound requires differentiating through iLQR solutions, which is made possible
by recent advances in differentiable control. Importantly, the recognition model
is naturally tied to the generative model, greatly reducing the number of free pa-
rameters and ensuring high-quality inference throughout the course of learning.
Moreover, iLQR can be used to perform inference flexibly on heterogeneous trials
of varying lengths. This allows for instance to evaluate the model on a single long
trial after training on smaller chunks. We demonstrate the effectiveness of iLQR-
VAE on a range of synthetic systems, with autonomous as well as input-driven
dynamics. We further apply it to neural and behavioural recordings in non-human
primates performing two different reaching tasks, and show that iLQR-VAE yields
high-quality kinematic reconstructions from the neural data.

1 INTRODUCTION

The mammalian brain is a complex, high-dimensional system, containing billions of neurons whose
coordinated dynamics ultimately drive behaviour. Identifying and interpreting these dynamics is
the focus of a large body of neuroscience research, which is being facilitated by the advent of new
experimental techniques that allow large-scale recordings of neural populations (Jun et al., 2017;
Stosiek et al., 2003). A range of methods have been developed for learning dynamics from data
(Buesing et al., 2012; Gao et al., 2016; Duncker et al., 2019; Archer et al., 2015; Hernandez et al.,
2018; She and Wu, 2020; Kim et al., 2021; Nguyen et al., 2020). These methods all specify a
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generative model in the form of a flexible latent dynamical system driven by process noise, coupled
with an appropriate observation model.

Importantly, neural recordings are typically only made in a small selection of brain regions, leaving
many areas unobserved which might provide relevant task-related input to the recorded one(s). Yet,
the aforementioned methods perform Bayesian inference of state trajectories directly, and there-
fore do not support inference of external input (which they effectively treat as process noise and
marginalize out). Indeed, simultaneous learning of latent dynamics and inference of unobserved
control inputs is a challenging, generally degenerate problem that involves teasing apart momentary
variations in the data that can be attributed to the system’s internal transition function, and those that
need to be explained by forcing inputs. This distinction can be achieved by introducing external con-
trol in the form of abrupt changes in the latent state transition function, and inferring these switching
events (Ghahramani and Hinton, 2000; Linderman et al., 2017). More recently, Pandarinath et al.
(2018) introduced LFADS, a sequential variational autoencoder (VAE) that performs inference at
the level of external inputs as well as initial latent states. The inferred inputs were shown to be
congruent with task-induced perturbations in various reaching tasks in primates (Pandarinath et al.,
2018; Keshtkaran and Pandarinath, 2019). Further related work is discussed in Appendix A.

Here, we introduce iLQR-VAE, a new method for learning input-driven latent dynamics from data.
As in LFADS, we use an input-driven sequential VAE to encode observations into a set of initial
conditions and external inputs driving an RNN generator. However, while LFADS uses a separate,
bidirectional RNN as the encoder, here we substitute the inference network with an optimization-
based recognition model that relies on the powerful iterative linear quadratic regulator algorithm
(iLQR, Li and Todorov, 2004). iLQR solves an optimization problem that finds a mode of the exact
posterior over inputs for the current setting of generative parameters. This ensures that the encoder
(mean) remains optimal for every update of the decoder, thus reducing the amortization gap (Cremer
et al., 2018). Moreover, having the recognition model be implicitly defined by the generative model
stabilizes training, prevents posterior collapse (thus circumventing the need for tricks such as KL
warmup), and greatly reduces the number of (hyper-)parameters.

While iLQR-VAE could find applications in many fields as a general approach to learning stochastic
nonlinear dynamical systems, here we focus on neuroscience case studies. We first demonstrate in a
series of synthetic examples that iLQR-VAE can learn the dynamics of both autonomous and input-
driven systems. Next, we show state-of-the art performance on monkey M1 population recordings
during two types of reaching tasks (O’Doherty et al., 2018; Churchland et al., 2010). In particular,
we show that hand kinematics can be accurately decoded from inferred latent state trajectories, and
that the inferred inputs are consistent with recently proposed theories of motor preparation.

2 METHOD

iLQR-VAE models a set of temporal observations, such as behavioural and/or neural recordings,
through a shared input-driven nonlinear latent dynamical system (Figure S1). The input encapsu-
lates both process noise (as in traditional latent dynamics models), initial inputs that set the initial
condition of the dynamics, and any meaningful task-related control input. In this section, we de-
scribe the architecture of the generative model, and the control-based variational inference strategy
used for training the model and making predictions. A graphical summary of the model can be found
in Appendix B.

2.1 GENERATIVE MODEL

We consider the following generative model:

latent state zt+1 = fθ(zt,ut, t) (1)
observations ot|zt ∼ pθ(ot|zt) (2)

where ut ∈ Rm, zt ∈ Rn and ot ∈ Rno are the input, latent state and observations at time t,
respectively. Here, observations may comprise either neural activity, behavioural variables, or both
– the distinction will be made later where relevant. We use the notation θ to denote the set of all
parameters of the generative model. We use u0 to set the initial condition z1 = fθ(0,u0, 0) of the

2



network1. This way, the latent state trajectory of the network z(u) = {z1, . . . ,zT } is entirely de-
termined by the input sequence u = {u0, . . . ,uT } and the state transition function fθ(·), according
to Equation 1. For fθ(·), we use either standard linear or GRU-like RNN dynamics (see Appendix C
for details). For the likelihoods, we use Gaussian or Poisson distributions with means given by linear
or nonlinear readouts of the network state of the form ōt = h(Czt + b) (Appendix D).

We place a Gaussian prior over ut≤0. We then consider two alternative choices for the prior over
ut>0. The first is a Gaussian prior

pθ(ut>0) = N (0,S2) (3)

with S = diag(s1, . . . , sm). In many settings however, we expect inputs to enter the system in
a sparse manner. To explicitely model this, we introduce a second prior over u in the form of a
heavy-tailed distribution constructed hierarchically by assuming that the ith input at time t > 0 is

uit = siεit
√
ν/αt (4)

where si > 0 is a scale factor, εit ∼ N (0, 1) is independent across i and t, and αt ∼ χ2
ν is a

shared scale factor drawn from a chi-squared distribution with ν degrees of freedom. Thus, inputs
are spatially and temporally independent a priori, such that any spatio-temporal structure in the
observations will have to be explained by the coupled dynamics of the latent states. Moreover, the
heavy-tailed nature of this prior allows for strong inputs when they are needed. Finally, the fact that
the scale factor is shared across input dimensions means that inputs are either all weak or potentially
all strong at the same time for all input channels, expressing the prior belief that inputs come as
shared events.

This hierarchical construction induces a multivariate Student prior at each time step:

pθ(ut) =
Γ [(ν +m)/2]

Γ [ν/2] (νπ)m/2|S|

[
1 +

1

ν
uTt S

−2ut

]−(ν+m)/2

(5)

where S = diag(s1, . . . , sm). Note that both S and ν are parameters of the generative model, which
we will learn.

2.2 ILQR-VAE: A NOVEL CONTROL-BASED VARIATIONAL INFERENCE STRATEGY

To train the model, we optimize θ to maximize the log-likelihood of observing a collection of inde-
pendent observation sequences O = {o(1), . . . ,o(K)}, or “trials”, given by:

log pθ(O) =

K∑
k=1

log

∫
pθ(o

(k)|z(u))pθ(u) du. (6)

As the integral is in general intractable, we resort to an amortized variational inference strategy by
introducing a recognition model qφ(u|o(k)) to approximate the posterior pθ(u|o(k)). Following
standard practice (Kingma and Welling, 2013; Rezende et al., 2014), we thus train the model by
maximizing the evidence lower-bound (ELBO):

L(O, θ, φ) =
∑
k

Eqφ(u|o(k))

[
log pθ(o

(k)|u) + log pθ(u)− log qφ(u|o(k))
]

(7)

=
∑
k

Eqφ(u|o(k))

[
T∑
t=1

log pθ(o
(k)
t |zt) + log pθ(ut)− log qφ(ut|o(k))

]
(8)

≤ log pθ(O). (9)

with respect to both θ and φ.

1Note that when m < n, u0 can only reach an m-dimensional subspace of initial conditions, which could
be limiting. We can circumvent this problem by spreading u0 over multiple surrogate time bins before the
start of the trial, i.e. introduce {u−n/m, . . . ,u−2,u−1,u0} together with an appropriate dependence of fθ
on t ≤ 0 in Equation 1, such that each of these surrogate inputs target a different latent subspace with purely
integrating (“sticking”) linear dynamics before t = 1.
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Here, the main novelty is the use of an optimization-based recognition model. We reason that
maximizing the exact log posterior, i.e. computing

u?(o(k)) = argmax
u

log pθ(u|o(k)) (10)

= argmax
u

[
T∑
t=1

log pθ(o
(k)
t |u) + log pθ(ut)

]
(11)

subject to the generative dynamics of Equations 1 and 2, is a standard nonlinear control problem:
log pθ(o

(k)
t |u) acts as a running cost penalizing momentary deviations between desired outputs ot

and the actual outputs caused by a set of controls u, and log pθ(ut) acts as an energetic cost on those
controls. Importantly, there exists a general purpose, efficient algorithm to solve such nonlinear
control problems: iLQR (Li and Todorov, 2004; Appendix E). We thus propose to use a black-box
iLQR solver to parameterize the mean of the recognition density qφ(u|o) for any o, and to model
uncertainty separately using a multivariate Gaussian density common to all trials. Therefore, we
parametrize the recognition model as follows:

qφ(u|o) = N (u;u?(o),Σs ⊗Σt) (12)
with u?(o) = iLQRsolve(o, θ). (13)

where we use a separable posterior covariance (the Kronecker product of a spatial factor Σs and a
temporal factor Σt).

To optimize the ELBO, we estimate the expectation in Equation 8 by drawing samples from
qφ(u|o(k)) and using the reparameterization trick (Kingma et al., 2015) to obtain gradients. A
major complication that would normally preclude the use of optimization-based recognition models
is the need to differentiate through the mean of the posterior. In this case, this involves differentiating
through an entire optimization process. Using automatic differentiation within the iLQR solver is
in general impractically expensive memory-wise. However, recent advances in differentiable model
predictive control enable implicit differentiation through iLQRsolve with a memory cost that does
not depend on the number of iterations (Amos et al., 2018; Blondel et al., 2021; Appendix F).

2.3 COMPLEXITY AND IMPLEMENTATION

We optimize the ELBO using Adam (Kingma and Ba, 2014) with a decaying learning rate ∝ 1/
√
i

where i is the iteration number. Averaging over data samples can be easily parallelized; we do this
here using the MPI library and a local CPU cluster. In each iteration and for each data sample, ob-
taining the approximate posterior mean through iLQR is the main computational bottleneck, with a
complexity ofO(T (n3 +n2no)). To help mitigate this cost, we find it useful to re-use the previously
inferred control inputs to initialize each iLQRsolve.

3 EXPERIMENTS AND RESULTS

3.1 ILQR-VAE ENABLES FAST LEARNING OF DYNAMICS

Before demonstrating the method on a number of synthetic and real datasets involving ongoing
external inputs, we begin with a simpler example meant to illustrate some of iLQR-VAE’s main
properties (Figure 1). We generated data from an autonomous (i.e. non-input-driven) linear dynam-
ical system (n = 8 latents, m = 3 input channels) seeded with a random initial condition in each of
56 trials. The state zt was linearly decoded with added Gaussian noise to produce observation data,
which we used to train a model in the same class.

At the beginning of learning, iLQR-VAE originally relies on large ongoing inputs that control the
generator into producing outputs very similar to the observations in the data (Figure 1, red box,
left), resulting in a rapidly decreasing loss. Subsequently, the amount of input required to fit the
observations gradually decreases as the system learns the internal dynamics of the ground truth
system. Eventually, the inferred control inputs become confined to the first time bin, i.e. they act
as initial conditions for the now autonomous dynamics of the generative model. Thus, iLQR-VAE
operates in a regime where the output of the generator explains the data well at all times, and learning
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ū|o
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Figure 1: Fast and robust learning in
iLQR-VAE. Example run of iLQR-VAE on a
synthetic dataset generated by an autonomous
linear dynamical. iLQR-VAE with an adap-
tive prior over control inputs (red) initially
uses large inputs to fit the observations, but
gradually pushes those inputs back into initial
conditions as it acquires the ground truth au-
tonomous dynamics. In contrast, iLQR-VAE
with a rigid input prior imposing autonomous
dynamics gets stuck in plateaus and learns
considerably more slowly (black; see text for
details). For each setting, insets show the
three inferred inputs for a given test trial (top;
posterior mean ū|o, rescaled by the maxi-
mum input in the sequence), and the poste-
rior predictions for the first two correspond-
ing outputs (ōi|o; black dots: ground truth;
blue: posterior mean with 95% c.i.). We also
compare learning curves with LFADS (yellow
curve). We used the same generator architec-
ture in all scenarios, and the learning rate was
hand-tuned for each example.

consists in making the inputs more parsimonious. We note that this regime is facilitated here by our
choice of generator dynamics, which we initialised to be very weak (i.e with a small spectral radius)
initially and therefore easily controllable.

We contrast this with learning in a modified version of iLQR-VAE where we allowed u0 to vary
freely (with a Gaussian prior of adjustable variance) but effectively fixed ut>0 to be 0. In other
words, we constrained the dynamics of the generator to remain (near-)autonomous throughout learn-
ing (Figure 1, grey box, top). Although this incorporates important information about the ground
truth generator (which is itself autonomous), counter-intuitively we found that it impairs learning.
At the beginning of training, iLQR is unable to find initial conditions that would explain the data
well, resulting in a much higher initial loss. The model then gets stuck in plateaus that are seemingly
avoided by the free version of iLQR-VAE (see Figure S2 for independent repeats of this experiment).

On the same toy dataset, we also compared iLQR-VAE to LFADS (Pandarinath et al., 2018), keeping
the generative model in the same model class (see Appendix G for details). We found that LFADS
learns in a similar manner to iLQR-VAE (Figure 1), also progressively doing away with inputs.

3.2 ILQR-VAE FOR NONLINEAR SYSTEM IDENTIFICATION

Next, we illustrate the method on an autonomous nonlinear dynamical system, the chaotic Lorenz
attractor (Lorenz, 1963; Appendix H). This is a standard benchmark to evaluate system identification
methods on nonlinear dynamics (Nguyen et al., 2020; Hernandez et al., 2018; Champion et al.,
2019), and one typically considers the dynamics to be learned if the trained model can recreate the
whole attractor structure.

Here, we show that iLQR-VAE can learn these complex nonlinear dynamics. Before training, the
inferred inputs are large throughout the trial, and explain the output observations by forcing the in-
ternal state of the generator into appropriate trajectories (Figure 2A, top). At the end of learning,
the inputs remain confined to the first time bin, setting the initial condition of the trajectories which
are now driven by the stronger, near-autonomous dynamics of the generator. In Figure 2B we show
that, conditioned on an initial bout of test data, the model perfectly predicts the rest of the trajec-
tory. Moreover, starting from a random initial condition, the model can recreate the whole attractor
structure (Figure 2C).
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Figure 2: Learning nonlinear autonomous dynamics. (A) Evolution of the negative ELBO dur-
ing training of an iLQR-VAE model with a nonlinear RNN and a Gaussian likelihood (n = 20,
m = 5, no = 3). The inputs inferred by iLQR are originally strong (blue, before learning), but
are progressively pushed to initial conditions (red, after learning) as the autonomous dynamics of
the Lorenz attractor are approximated with increasing accuracy. (B) Four example test trajectories
(columns), conditioning on the noisy data within the first half (green shading), and predicting in the
second half. (C) Single long autonomous trajectory after training (setting ut>0 = 0), starting from
a random initial condition and running the dynamics for 10000 steps. The model displays the but-
terfly topology characteristic of the Lorenz system, and completes multiple cycles without deviating
from the attractor, suggesting that the ground-truth dynamics have been learned.

To quantitatively assess how well the dynamics have been learned, we computed the k-step coeffi-
cient of determination, R2

k, as in Hernandez et al. (2018). This metric evaluates how well the model
can predict the true state k steps into the future, starting from any state inferred along a test trajectory
(see Appendix H for details). Hernandez et al. reported R2

30 ≈ 1 but did not show results for larger
k. For iLQR-VAE, R2

30 = 0.998 and the forward interpolation was still very high at 50 time steps,
with R2

50 = 0.996.

3.3 INFERRING SPARSE INPUTS

To demonstrate iLQR-VAE’s ability to infer unobserved inputs and learn the ground truth dynamics
of an input-driven system, we generated synthetic data from a system with n = 3,m = 3 and
no = 10, which evolves with linear dynamics for T = 1000 time steps (see Appendix I for an
example with input-driven nonlinear dynamics). The system was driven by sparse inputs, and the
output corrupted with Gaussian noise. Input events were drawn in each time step from a Bernoulli
distribution with mean p = 0.03. Whenever an input event occurred, the magnitude of inputs in
each channel was drawn from a standard mutivariate Gaussian distribution.

We fit both iLQR-VAE and LFADS models to these data, choosing the generator to be within
the ground-truth model class for both. iLQR-VAE captured most of the variance in the inputs
(Figure 3A; R2 = 0.94 ± 0.02; 5 random seeds), and recovered the eigenvalue spectrum of the
transition matrix almost perfectly (Figure 3B). LFADS however performed poorly on this example
(R2 = 0.05 ± 0.02 for input reconstruction; 3 random seeds), as well as in several other similar
comparisons on datasets of different sizes and trial numbers (Appendix J). This is unsurprising, as
LFADS assumes a dense (auto-regressive) Gaussian prior over the inputs, which is not overridden
by the relatively small amount of data used here. Note however that when applied to a set of 56 trials
of 100 time steps driven by Gaussian autoregressive inputs, iLQR-VAE still captured the structure
in the inputs more accurately than LFADS did (R2 = 0.81± 0.01 vs. 0.29± 0.06). We hypothesize
that this reflects the difficulty of learning a good recognition model from a small amount of data.
We evaluate the effect of the choice of prior more extensively in Appendix K.

3.4 PREDICTING HAND KINEMATICS FROM PRIMATE M1 RECORDINGS

3.4.1 TRIAL-STRUCTURED MAZE TASK

To highlight the utility of iLQR-VAE for analyzing experimental neuroscience data, we next applied
it to recordings of monkey motor (M1) and dorsal premotor (PMd) cortices during a delayed reach-
ing task (‘Maze’ dataset of Kaufman et al., 2016; DANDI 000128). This dataset contains 108 differ-

6



o1
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Figure 3: Inferring sparse inputs to a linear system. (A) Top: example observations (black
dots) and inferred posterior mean (blue line). Bottom: true and inferred inputs. iLQR-VAE is able
to infer the timing and magnitude of the inputs almost perfectly, despite being trained on only a
single timeseries of 1000 time steps. Note that iLQR-VAE fails to infer one of the smallest inputs,
whose effect on the observations is largely masked by observation noise. (B) Comparison of the true
(black) and learned (blue) eigenvalue spectra. This shows that iLQR-VAE recovers the ground-truth
dynamical system up to a similarity transformation.

ent reach configurations over nearly 3000 trials, and has recently been proposed as a neuroscience
benchmark for neural data analysis methods (Pei et al., 2021). We compared the performance of
iLQR-VAE to several other latent variable models, evaluated on this dataset in Pei et al. (2021).

Consistent with previous findings (Pandarinath et al., 2018), iLQR-VAE inferred inputs that were
confined to initial conditions, from which smooth single-trial dynamics evolved near-autonomously
(Figure 4A). As a first measure of performance, we evaluated the models on “co-smoothing”, i.e
the ability to predict the activity of held-out neurons conditioned on a set of held-in neurons (see
Appendix L for details). Conditioning of 137 neurons (i.e using 45 held-out neurons), we obtained
a co-smoothing of 0.331 ± 0.001 (over 5 random seeds). For comparison, Pei et al. (2021) reports
0.187 for GPFA (Yu et al., 2009), 0.225 for SLDS (Linderman et al., 2017), 0.329 for Neural Data
Transformers (Ye and Pandarinath, 2021) andR2 = 0.346 for AutoLFADS (LFADS with large scale
hyperparameter optimization; Keshtkaran et al., 2021) on the same dataset.

Next, we assessed how well hand velocity could be decoded from neural activity – another metric of
interest to neuroscientists. We applied ridge regression to predict the monkey’s hand velocity (with a
100 ms lag) from momentary neuronal firing rates (mean of the posterior predictive distribution) on
test data. This reconstruction could be performed with very high accuracyR2 = 0.896±0.002 (over
5 random seeds), compared to 0.640 for GPFA, 0.775 for SLDS, 0.897 for Neural Data Transformers
and 0.907 for AutoLFADS (Pei et al., 2021). These experiments place iLQR-VAE on par with state-
of-the-art methods, without any extensive hyperparameter optimization.

3.4.2 CONTINUOUS REACHING TASK

While a large number of neuroscience studies perform neural and behavioural recordings during
trial-structured tasks, much can be learned by analyzing the dynamics of more naturalistic, less
constrained behaviours. iLQR-VAE’s flexible recognition model is well-suited to the analysis of
such less structured tasks, as it can easily be trained and tested on trials of heterogeneous lengths.
To illustrate this, we applied iLQR-VAE to a self-paced reaching task during which a monkey had to
reach to consecutive targets randomly sampled from a 17x8 grid on a screen (O’Doherty et al., 2018;
Makin et al., 2018). This dataset consists of both neural recordings from primary motor cortex (M1)
together with continuous behavioural recordings in the form of x- and y-velocities of the fingertip.

In this example, we experimented with fitting the spike trains and hand velocities jointly (combining
a Poisson likelihood for the 130 neurons and a Gaussian likelihood for the 2 kinematic variables, see
Appendix M for further details). We found that it allowed iLQR-VAE to reach a similar kinematic
decoding performance as when fitting neural activity alone, but using a smaller network. More gen-
erally, we reason that a natural approach to making behavioural predictions from neural data using
a probabilistic generator is to fit it to both jointly, and then use the posterior predictive distribution
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Figure 4: iLQR-VAE can be used to decode kinematics from neural data, and learns dynamics
relying strongly on preparatory inputs. (A) 50 example hand trajectories (top) from the monkey
reaching ‘Maze’ dataset, corresponding single-trial firing rate timecourse (middle; one example neu-
ron), and inferred input (bottom; one example input dimension). (B) Mean (thick) and single-‘trial’
(thin) firing rates of two example neurons during reaches of various directions (colours), aligned
to target onset. Note that three single-‘trial’ firing rates are shown for only three of the 8 reach
directions for which averages are shown. Interestingly, single ‘trial’ activities evolve tightly around
their trial averages, and resembles the firing rate responses shown in A (middle). (C) Example spike
raster (top) and hand kinematics (bottom) for a 4 second-long chunk of test data in the continuous
monkey reaching task. vx and vy refer to hand x- and y-velocities respectively. (D) Overall magni-
tude of the inferred inputs ‖ut‖ (blue), average population spiking activity (red), and hand velocity
‖yt‖ (black), each z-scored, averaged across movement episodes, and aligned to target onset (top)
or movement onset (bottom).

over behavioural variables (conditioning on spike trains only) as a nonlinear decoder. In future work,
this could provide more accurate predictions in those motor tasks where linear regression struggles
(see e.g. Schroeder et al., 2022).

For our analyses, we used the first ∼ 22 minutes of a single recording session (indy 20160426),
excluded neurons with overall firing rates below 2 Hz, and binned data at 25 ms resolution. Although
it is not a formal requirement of our method, we chunked the data into 336 non-overlapping pseudo-
trials of 4 s each, in order to enable parallelization of the ELBO computation during training. We
only trained the model on a random subset of 168 trials.

To highlight the flexibility of iLQR as a recognition model, we then evaluated the model by per-
forming inference on the first 9 minutes of the data, as a single long chunk of observations. Note
that this is not generally possible in LFADS or any sequential VAE where an encoder RNN has been
trained exclusively on trials of the same fixed length. Despite the lack of trial structure, we found
that neurons display a stereotyped firing pattern across multiple instances of each reach. This was
revealed by binning the angular space into 8 reach directions, temporally segmenting and grouping
the inferred firing rates according to the momentary reach direction, and aligning these segments to
the time of target onset (Figure 4B). Moreover, hand kinematics could be linearly decoded from the
inferred firing rates with high accuracy (Figure 4C; R2 = 0.75± 0.01 over 5 random seeds), on-par
with AutoLFADS (R2 = 0.76; Keshtkaran et al., 2021), and considerably higher than GPFA and
related approaches (R2 = 0.6; Jensen et al., 2021).

We next wondered whether we could use iLQR-VAE to address an open question in motor neu-
roscience, namely the extent to which the peri-movement dynamics of the motor cortex rely on
external inputs (possibly from other brain areas). Such inputs could arise during movement prepara-
tion, execution, neither, or both. We thus examined the relationship between the inputs inferred by
iLQR-VAE and the concurrent evolution of the neuronal firing rates and hand kinematics. Overall,
neuronal activity tends to rise rapidly starting 150 ms before movement onset (Figure 4D, red), con-
sistent with the literature (Shenoy et al., 2013; Churchland et al., 2012). Interestingly, we observed
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that inputs tend to arise much earlier (around the time of target onset), and start decaying well before
the mean neural activity has finished rising (Figure 4D top), about 150 ms before the hand started
to move (Figure 4D, bottom). While these results must be interpreted cautiously, as inference was
performed using information from the whole duration of the trial (i.e. using iLQR as a smoother),
they show that the data is best explained by large inputs prior to movement onset, rather than during
movement itself. Interestingly, the timing of these inputs is globally consistent with target-induced
visual inputs driving preparatory activity in M1, whose dynamics then evolve in a more autonomous
manner to drive subsequent motion.

4 DISCUSSION

LIMITATIONS AND FUTURE WORK

While we have demonstrated that iLQR-VAE performs well on various toy and real datasets, the
method has a number of limitations, some of which could be addressed in future work. Firstly,
the problem of decoupling ongoing inputs from dynamics is degenerate in general, and there is no
guarantee that iLQR-VAE will always successfully identify the ground-truth. This problem will be
exacerbated in the low data regime, or if there is a large mismatch between our prior over inputs and
the true input distribution. While further generalization tests such as extrapolations can be used to
assess post-hoc how well the dynamics have been learned, the lack of identifiability will often make
interpretation of the model parameters difficult. Secondly, using iLQR as a way of solving maximum
a posteriori inference in state space models comes at a high computational cost, and with the risk
that iLQR may converge to a local minimum. We note that both these issues could potentially be
tackled at once if process noise in the generator was modelled separately from control inputs, as
the MAP estimation problem could then be solved using some of the highly efficient algorithms
available in the framework of linearly solvable stochastic control (Todorov, 2009; Dvijotham and
Todorov, 2013; Kappen, 2005). Finally, for simplicity we modelled posterior input uncertainty using
a common covariance across all data samples. This might be limiting, for example when modelling
neural populations that exhibit coordinated global firing fluctuations giving rise to data samples with
highly variable information content. A better solution, left to future work, would be to amortize the
computation of the posterior uncertainty by reusing some of the computations performed in iLQR.

CONCLUSION

The rise of new tools and software now makes it possible to record from thousands of neurons
while monitoring behaviour in great detail (Jun et al., 2017; Mathis et al., 2018; Musk et al., 2019).
These datasets create unique opportunities for understanding the brain dynamics that underlie neural
and behavioural observations. However, identifying complex dynamical systems is a hard nonlin-
ear filtering and learning problem that calls for new computational techniques (Kutschireiter et al.,
2020). Here, we exploited the duality between control and inference (Toussaint, 2009; Kappen and
Ruiz, 2016; Levine, 2018; Appendix N) to bring efficient algorithms for nonlinear control to bear
on learning and inference in nonlinear state space models.

The method we proposed uses iLQR, a powerful general purpose nonlinear controller, to perform
amortized inference over inputs in an RNN-based generative model. Using an optimization-based
recognition model such as iLQR has two advantages. First, it brings important flexibility at test time,
enabling predictions on arbitrary, heterogeneous sequences of observations as well as seamless han-
dling of missing data. Second, owing to parameter sharing between the generative and recognition
models, the ELBO gap is reduced (Appendix O), making learning more robust (in particular, to
initialization) and reducing the number of hyperparameters to tune. With the advent of automat-
ically differentiable optimizers (Blondel et al., 2021), we therefore hope that optimization-based
recognition models will open up new avenues for VAEs.
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Appendix
A ADDITIONAL RELATED WORK

In this section, we first discuss (non-exhaustively) several methods used for identifying dynamical
systems from data, before presenting the few approaches we are aware of that explictly tackle the
problem of inferring unobserved control inputs to those systems.

The problem of identifying the dynamics giving rise to a set of observations is one that spans many
fields, from climate modelling to neuroscience, and a variety of methods have therefore been devel-
oped to tackle it. Most existing approaches assume non-driven dynamics, as this greatly facilitates
systems identification.

One common modelling paradigm is to assume the data arises from a latent linear dynamical sys-
tem (LDS), which parameters can be learned using an Expectation-Maximization (EM) approach
Ghahramani and Hinton (1996). While linear models are typically very efficient as they allow es-
timates to be computed in closed-form, they severely restrict the range of dynamics that can be
approximated. Various extensions have been proposed, such as switching linear dynamical sys-
tems (Linderman et al., 2017; Ghahramani and Hinton, 2000), which assume that the data can be
modelled using several latent dynamical systems with a Hidden Markov Model controlling the tran-
sitions between those. Alternatively, Costa et al. (2019) proposes to use adaptative locally linear
dynamics and uses an iterative procedure to find the most likely switching points. In a similar vein,
Hernandez et al. (2018) approximates the dynamics as locally linear; interestingly, the proposed
method (VIND) incorporates the generative dynamics in the approximate posterior distribution over
latent trajectories given data. This is reminiscent of the approach taken in iLQR-VAE, where the
recognition parameters are kept tied to the generative parameters.

Another way to keep the problem solvable while allowing for richer dynamics is to approximate
those using a linear combination of nonlinear basis functions. This then turns the optimization
into the more simple problem of learning the weights of the expansion (with the caveat that one
needs to choose the set of basis functions). This is the method used in Brunton et al. (2016b), with
an additional constraint that the coefficients are sparse in the space of basis functions, yielding a
more interpretable model. This was later extended in Champion et al. (2019) to allow for automatic
discovery of a set coordinates in which the dynamics can be approximated as sparse.

In a similar manner, a popular approach involves modelling the dynamics as linear in the space of
observables (which can include linear or nonlinear mappings from the state of the system), as is done
in dynamic mode decomposition Schmid (2010); Kutz et al. (2016) (see Brunton et al. (2016a) for
applications to neural data). This approach is closely related to Koopman operatory theory, which
finds a set of dynamic modes and uses those to approximate the data as a single linear dynamical
system.

Finally, the dynamics can be modelled using nonlinear neural networks, and the parameters learned
using variational methods (see e.g Nguyen et al., 2020; Hernandez et al., 2018; Koppe et al., 2019).

Most of the aforementioned models can be extended to incorporate known external inputs coming
into the system. This is for instance done in dynamic mode decomposition with control inputs
(DMDc; Proctor et al., 2016), which can be generalized into Koopman operators with inputs and
control (KIC; Proctor et al., 2018).

On the other hand, the range of methods modelling dynamics driven by unobserved inputs (which
must thus be inferred) is a lot more limited. Indeed, LFADS (Pandarinath et al., 2018) is the first
method we are aware of which explicitely models the set of control inputs driving the system. As
described in the main text, LFADS models the dynamics as a (potentially) input-driven nonlinear
dynamical system, and learns both the parameters and the inputs. More recently, Fieseler et al.
(2020) proposed an extension of DMDc to handle unsupervised learning of unobserved signals as
well as estimation of the dynamics. This was then used this to successfully model neural recordings
made in C. elegans. Crucially however, the dynamics were modelled as linear, thus restricting
the range of dynamics that the learnt system could generate. Morrison et al. (2020) modelled the
same data using input-driven nonlinear dynamics, but assumed a limited subset of inputs driving
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transitions at given time points, and thus only learned the magnitude of those inputs and not their
timing.

Finally, an approach related to the modelling of unobserved inputs (which give rise to changes
that cannot be explained by the dynamics alone) is the explicit modelling of events which lead to
discontinuities in the dynamics. This is done in Chen et al. (2020) within the framework of neural
ordinary differential equations (Chen et al., 2018). To some extent, one can also view switching
dynamical models as inferring unobserved inputs giving rise to state transitions, although those
“inputs” are restricted to live in a discrete subspace.

B GRAPHICAL SUMMARY OF THE MODEL

input u

RNN

latent state z

observations o

ne
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time

inference (iLQR)
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Figure S1: Illustration of the model iLQR-VAE is trained to model a set of noisy observations
(here, spike trains). During each training iteration, iLQR is used to infer the input u (green), given
observations and the current parameters of the generator. Intuitively, the optimal inputs are ones that
produce latent trajectories in the RNN that are most compatible with the data, without overfitting.
Predictions are generated by running the dynamics forward, conditioned on a given input and set of
parameters.

C IMPLEMENTATION OF THE DYNAMICS

We considered different functional forms for the discrete-time dynamics of the latent state. In the
following, zt and ut denote the latent state and an external input at time t, respectively.

C.1 LINEAR DYNAMICS

The simplest case considered is that of linear dynamics:

zt+1 = Azt +But (S1)

One issue with linear dynamics is that they may become unstable, such that repeated application
of the operator A will lead to a divergence of ‖z‖ and the associated gradients. This can become
problematic, especially when modelling long sequences of observations. To circumvent this issue,
we used a parametrization of the propagator A that ensured it remained stable at all times. To find
a stable linear parametrization, we considered the Lyapunov stability condition (Bhatia and Szegö,
2002). The discrete time dynamics of Equation S1 are asymptotically stable if and only ifA satisfies

P −APAT = I (S2)
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for some positive definite matrix P with eigenvalues ≥ 1. It is easy to verify that the following
parameterization of the state matrixA satisfies this criterion:

A = UD1/2Q(D+ I)−1/2UT (S3)

with U and Q arbitrary unitary matrices, and D an arbitrary non-negative diagonal matrix. Con-
versely, any stable matrix can be reached by this parameterization. Note that the matrix P that
satisfies Equation S2 is then given by P = U(D + I)UT . Finally, as we are also learning the B
and C matrices in Equation S1, we can without loss of generality set U = I .

C.2 GRU DYNAMICS

To fit the monkey reaching data as well as the Lorenz attractor, we chose the dynamical system to be
Minimal Gated Unit (MGU). More specifically, we used the MGU2 variant of the MGU proposed
in Heck and Salem (2017):

ft = σ(Ufzt−1) (S4)
ẑt = g(Uh(ft � zt−1) +Wxt + bh) (S5)
zt = (1− ft)� zt−1 + ft � ẑt−1 (S6)

where xt = But denotes the input entering the dynamical system. Note that the latent state z is
often denoted by h is the literature. We found that the MGU2 gave better and more stable perfor-
mance than the MGU. We hypothesize that this is due to the input entering the system in the update
gate only (as opposed to entering it through both forget and update gates), thus making the system
more easily controllable. We chose σ(·) to be a sigmoid function, and g(·) to be a soft ReLu-like
nonlinearity,

g(x) =
x+
√
x2 + 4

2
− 1. (S7)

D LIKELIHOOD FUNCTIONS

The likelihood of the observations appears both in the ELBO and in the iLQR cost. Minimization
of the latter via iLQR requires computing the momentary Jacobians and Hessians of the likelihood
function w.r.t. the internal state zt. Although these quantities can be obtained generically via auto-
matic differentiation, iLQR is always faster when they are provided directly (Appendix E), which
we did here using the analytical expressions given below.

D.1 GAUSSIAN LIKELIHOOD

For the Gaussian likelihood, we assume observations o are linearly decoded from latents z and
corrupted with Gaussian noise, such that o ∼ N (Cz+ b,Σ), withC the readout matrix, b a vector
of biases, and Σ a diagonal matrix of variances. This yields the following log-likelihood function:

logP (ot|z) = −1

2

[
(Czt + b− ot)TΣ−1(Czt + b− ot) + no log(2π) +

∑
i

log Σii

]
(S8)

The Jacobian of this expression is as follows :

∂ logP (ot|zt)
∂zt

= −CTΣ−1(Czt + b− o) (S9)

Finally, the Hessian is given by :

∂2 logP (ot|zt)
∂zt∂zTt

= −CTΣ−1C (S10)

D.2 POISSON LIKELIHOOD

To model spike trains, we assume that they are generated by a Poisson process with an underlying
positive rate function for neuron i given by:

µi = βif((Cz)i + bi) ∆ (S11)
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where f : Rn → Rn+ is a nonlinear function (chosen to be an exponential when modelling the
monkey recordings, and a soft ReLU-like nonlinearity elsewhere), ∆ denotes the time bin size, and
βi is a neuron-specific gain parameter. This yields the following log-likelihood :

logP (ot|zt) =

no∑
i=1

(oi logµi − µi + log oi!) (S12)

where the sum is performed over neurons. Using the shorthand notations h(x) = log f(x) and
at = Czt + b, the Jacobian and Hessian of this expression are given by :

∂ logP (ot|zt)
∂zt

= CT [ot � h′(at)−∆β � f ′(at)] (S13)

∂2 logP (ot|zt)
∂zt∂zTt

= CT [diag(ot � h′′(at))−∆ diag(β � f ′′(at))]C (S14)

E ILQR ALGORITHM

Our recognition model makes use of the iterative Linear Quadratic Regulator algorithm (iLQR;
Li and Todorov, 2004; Tassa et al., 2014) to find the mean of the posterior distribution qφ(u|o).
Iterative LQR is used to solve finite-horizon optimal control problems with non-linear dynamics
and non-quadratic costs by (i) linearizing the dynamics locally around some initial trajectory, (ii)
performing a quadratic approximation to the control cost around that same trajectory, (iii) solving
the linear-quadratic problem generated by the local approximation to obtain better control inputs,
and (iv) repeat until convergence, each time linearizing around the trajectory induced by the new
inputs. Below, we first introduce the linear-quadratic regulator (LQR), and detail the approximation
used in iLQR to turn any non-linear non-quadratic problem into one that can be solved with LQR.
Moreover, we provide pseudo-code for our implementation of iLQR (see Algorithm 1).

The Linear Quadratic Regulator is concerned with finding the set of controls u ∈ Rm that minimize
a quadratic cost function C(u) under deterministic linear dynamics, given by:

C(u) =

T∑
t=0

1

2

(
zTt C

zz
t zt + uTt C

uu
t ut + zTt C

zu
t ut + uTt C

uz
t zt

)
+ zTt c

z
t + uTt c

u
t (S15)

s.t. zt+1 = Atzt +Btut + ht. (S16)

Here,At ∈ Rn×n is a (possibly time-dependent) transition matrix,Bt ∈ Rn×m represents the input
channels at time t, and ht is a state and input-independent term. Note that z ∈ Rn is a deterministic
function of the initial condition z0 and the sequence of inputs u. LQR finds the inputs minimizing
Equation S15 using a dynamic programming approach, by recursively finding the feedback rule
(Kt,kt) which gives the optimal inputs to minimize the cost-to-go at each time t asut = Ktzt+kt.
Details can be found in function Backward in Algorithm 1.

iLQR is an extension of LQR to general dynamics and cost functions. Specifically, iLQR minimizes

Cθ(u) =

T−1∑
t=0

rθ(zt,ut, t) subject to zt+1 = fθ(zt,ut, t) (S17)

where θ denotes a set of parameters. At iteration i, iLQR approximates both the dynamics and the
cost around the current trajectory τ i = (zi,ui) as:

f̃ iθ(δzt, δut, t) ≈ fθ(τ i) + (∇zfθ)
T δzt + (∇ufθ)

T δut (S18)

and

r̃iθ(δzt, δut, t) ≈ rθ(τ it )+
1

2

[
δzTt (∇2

zzrθ)δzt + 2δzTt (∇2
zurθ)δut + δuTt (∇2

uurθ)δut
]

(S19)

+ δzT (∇zrθ) + δuT (∇urθ) (S20)
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Here, δz and δu refer to perturbations around the current nominal trajectory, and all ∇ operators
correspond to partial differentiation evaluated at the current nominal trajectory (ui, zi) and corre-
sponding time t.

The above equations are readily identified as a local LQR problem of the form of Equation S15,
which can thus be solved using standard dynamic programming tools. Once δu? minimizing Equa-
tion S19 has been computed, the inputs are updated as ui+1 = ui+δu?, and the new state trajectory
follows from simulating the dynamics forward with these new inputs. After each LQR update, we
thus obtain a new trajectory τ i+1 and the process repeats until convergence to some locally optimal
trajectory τ ?.

Implementation details can be found in Algorithm 1. Note that the backward LQR pass involves
inversion of the matrix Quu (defined in Algorithm 1 function Backward). Depending on
the specific form of the iLQR cost function, this might not always be positive-definite. Therefore,
we include an adaptive Levenberg-Marquard-type regularizer (not described in the pseudo-code)
Quu ← Quu + λI to maintain positive definiteness. Thus, iLQR effectively reverts to first-order
gradient descent, as opposed to second-order optimization, whenever the locally quadratic approxi-
mation is a bad one.

F DIFFERENTIATING THROUGH ILQR

Here we discuss how to efficiently differentiate through the iLQR algorithm. This becomes nec-
essary when one wishes to differentiate through a function involving an iLQRsolve, such as the
posterior mean of our recognition model (Equation 11). While a naive but simple strategy to achieve
this would be to unroll the algorithm and gather gradients for every step, this is expensive both com-
putationally and memory-wise. Amos et al. (2018) derived a way to analytically obtain gradients
with respect to the parameters of iLQR, at the cost of a single LQR pass. Specifically, differentiat-
ing through an iLQRsolve is achieved by running iLQR to convergence, forming a linear-quadratic
approximation around the converged trajectory, following the steps described in Appendix E and dif-
ferentiating through the corresponding LQR problem. Below, we provide an alternative derivation
to Amos et al.’s of the gradients of an LQR solution.

F.1 LQR OPTIMALITY CONDITIONS

We now introduce use the more compact notation τt =

[
zt
ut

]
, Ft = [At Bt],Ct =

[
Czz
t Cuz

t
Czu
t Cuu

t

]
,

which will be used in the rest of this section.

As described in Appendix E, the finite-horizon, discrete-time LQR problem involves minimizing:

J =

T∑
t=0

(1

2
τTt Ctτt + cTt τt

)
(S21)

subject to constraints on its dynamics

τt+1 = Ftτt + ft, (S22)

following the notation from Appendix E. To solve this problem, we write down the Lagrangian:

L =

T∑
t=0

(1

2
τTt Ctτt + cTt τt

)
+

T−1∑
t=0

λTt+1(Ftτt + ft − τt+1), (S23)

where λ1,λ2, · · · ,λT are adjoint (dual) variables that enforce the dynamic constraint. Differenti-
ating with respect to λt and τt enables us to obtain the set of equations satified by λ and τ , also
known as the KKT conditions (Kuhn and Tucker, 2014; Karush, 2014; Boyd et al., 2004):

[I 0] (Ctτt + ct) + F Tt λt+1 − λt = 0 (S24)

Ftτt + ft − [I 0] τt+1 = 0 (S25)

CT τT + cT − [I 0]
T
λT = 0 (S26)

z0 − [I 0] τ0 = 0 (S27)
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Algorithm 1 iLQRsolve(Cθ(u),uinit)), with u ∈ Rm and Cθ defined in Equation S17.
Parameters: θ, γ

I iLQR
τ 0 = Rollout(uinit)
for i = 1 to converged do

for t = 0 to T do
F zt = ∇zfθ, F ut = ∇ufθ
czt = ∇zrθ, cut = ∇urθ, Czz

t = ∇2
zrθ, Cuu

t = ∇2
urθ, Cuz

t = ∇2
uzrθ

end for
k[0:T−1],K[0:T−1] = Backward( F z[0:T ],F

u
[0:T ], c

z
[0:T ], c

u
[0:T ],C

zz
[0:T ],C

uz
[0:T ],C

uu
[0:T ]))

τ i = Forward(K[0:T−1],k[0:T−1], τ
i−1)

end for

� function Rollout(u)
z0 = 0
for t = 1 to T do
zt+1 = fθ(zt,ut)

end for
return τ = {z,u}

� function Backward( F z[0:T ],F
u
[0:T ], c

z
[0:T ], c

u
[0:T ],C

zz
[0:T ],C

uz
[0:T ],C

uu
[0:T ])

vT = czT ,VT = Czz
T

for t = T − 1 to 0 do
Qzz
t = Czz

t + F zt
>Vt+1F

z
t

Quz
t = Cuz

t + F ut
>Vt+1F

z
t

Quu
t = Cuu

t + F ut
>Vt+1F

u
t

qzt = czt + F zvt+1

qut = cut + F uvt+1

Kt = − (Quu
t )
−1
Quz
t

kt = − (Quu
t )
−1
qut

Vt = Qzz
t +Qzu

t Kt

vt = qzt +KT
t q

u
t

end for
return k[0:T−1],K[0:T−1]

� function Forward(K[0:T−1],k[0:T−1], τ = {u, z})
α = 1
repeat
ẑ0 = 0
û0 = αk0

for t = 1 to T do
ẑt = fθ(ẑt−1, ût−1)
ût = Kt(ẑt − zt) + αkt

end for
α = γα

until Cθ(û) < Cθ(u)
return τ = {ẑ, û}
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Rearranging, we can rewrite the KKT conditions in matrix form as:

. . .
Ct F Tt
Ft 0 [−I 0]

[−I 0]T Ct+1 F Tt+1
Ft+1 0

. . .


︸ ︷︷ ︸

K



...
τt
λt+1

τt+1

λt+2

...


︸ ︷︷ ︸

p

= −



...
ct
ft
ct+1

ft+1

...


︸ ︷︷ ︸

q

(S28)

These optimality conditions are satisfied for the solution to the optimization problem p? =
(τ ?0 , · · · , τ ?T ,λ?1, · · ·λ?T ). Equation S28 implies that the solution of the LQR problem p? will sat-
isfy:

p? = −K−1q. (S29)

Computing this quickly becomes infeasible asK grows with long-time horizons, and Equation S28
is typically solved in linear time using a dynamic programming approach, as described in Ap-
pendix E.

F.2 BACKPROPAGATING THROUGH THE LQR SOLVER

Differentiating through an LQR solve boils down to differentiating through the backsolve in Equa-
tion S29. In the following, we denote the adjoint of parameter θ as θ̄. From Giles (2008), we know
that the adjoint of the backsolve operation is given by:

q̄ = −K−T p̄, (S30)

K̄ = −K−T p̄pT = q̄pT . (S31)

We note that Equation S30 has the same form as Equation S29, which means we can compute
q̄ = (· · · , c̄t, f̄t, · · · )T by solving another LQR problem. After solving for τ̄ , we can then compute
K̄ as an outer-product of z̄ with y to get:

. . .
K̄Ct K̄FTt
K̄Ft

K̄Ct+1
K̄FTt+1

K̄Ft+1

. . .


︸ ︷︷ ︸

K̄

(S32)

=



...
c̄t
f̄t
c̄t+1

f̄t+1

...


(
· · · τ ?t

T λ?t+1
T τ ?t+1

T λ?t+2
T · · ·

)
(S33)

=



. . .
c̄tτ

?
t
T c̄tλ

?
t
T

f̄t+1τ
?
t
T

c̄t+1τ
?
t+1

T c̄t+1λ
?
t+1

T

c̄t+1λ
?
t+1

T

. . .


. (S34)
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Collecting all the gradients of C̄t and F̄t, we arrive at

C̄t =
1

2
(K̄Ct + K̄T

Ct) =
1

2
(c̄tτ

?
t
T + τ ?t c̄

T
t ) (S35)

F̄t = K̄Ft + K̄T
FTt

= f̄t+1τ
?
t
T + λ?t+1c̄

T
t . (S36)

Note that we have symmetrized the adjoint of Ct, which ensures that Ct remains symmetric after
each gradient update. The antisymmetric part of Ct does not contribute to the LQR cost.

Finally, one subtlety arises from the fact that Equation S22 and Equation S21 are written as a function
of τ in the general LQR setting. In the iLQR case however, the LQR problem is local at each
iteration, and δτ vanishes at convergence. If we denote by i the last iteration before declaring
convergence, one can however write the problem as a function of the variable of interest τ ?, using :

J =

T∑
t=0

(1

2
(τ ?Tt − τ iTt )Ct(τ

?
t − τ it ) + cTt (τ ?t − τ it )

)
(S37)

=

T∑
t=0

(1

2
τ ?Tt Ctτ

?
t + (cTt − τ itCt)τ ?t

)
+ cst (S38)

subject to constraints on its dynamics

τ ?t+1 = Ftτ
?
t + ft − Ftτ it . (S39)

This implies that the values forC and c need to be adjusted accordingly, such as to reflect the switch
of variable from δτ during the optimization to the fixed point τ ? to compute gradients. Note that at
convergence we can use τ i ≈ τ ?, giving access to all the necessary variables to compute gradients
with respect to θ.

G DETAILS OF EXPERIMENT 1
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Figure S2: Illustration of the learning
curves for 5 different runs of the “forced au-
tonomous” iLQR-VAE model. The model
consistently gets stuck in plateaus during the
optimization, leading to a slower convergence
than their “free” counterparts (see Figure 1).

The data in Section 3.1 was generated from an autonomous linear dynamical system with n = 8,
m = 3, and no = 8 where no is the dimension of the observation space. All the models were fit
using the dynamics within the ground-truth model class, i.e with linear dynamics, n = 8,m = 3, and
no = 8. We optimized the model parameters with Adam, using (manually optimized) learning rates
of 0.04/(1+

√
k/1) for the free iLQR-VAE model, 0.04/(1+

√
k/1 for autonomous iLQR-VAE and

0.02/(1+
√
k/30 for LFADS, where k is the iteration number. We used GRU networks with 32 units

to parametrize the LFADS encoders (one encoder for the initial condition and one for the inputs).
Note that while all methods run in similar wallclock time in this example, this will ultimately be
implementation and data-dependent.

In Figure S2, we show additional learning curves for the “forced autonomous” models; these show
that, even for different initializations and trajectories through the loss landscape, the model consis-
tently gets stuck in plateaus. This can be contrasted with the free-form iLQR-VAE models.

H FURTHER DETAILS OF LORENZ ATTRACTOR

The chaotic Lorenz attractor consists of a three-dimensional state (`1, `2, `3) evolving according to

˙̀
1 = 10(`2 − `1) ˙̀

2 = `1(28− `3)− `2 ˙̀
3 = `1`2 − 8`3/3 (S40)
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For our example, we generated data by integrating Equation S40 over a long time period using
a Runge-Kutta solver (RK4) followed by z-scoring and splitting the resulting state trajectory into
112 non-overlapping bouts (Figure 2A). We added Gaussian noise with a standard deviation of 0.1,
and trained iLQR-VAE on this dataset (Figure 2B, bottom). We then fitted these data using GRU
dynamics with n = 20 and m = 5.

The normalized k-step mean-squared error was defined as follows:

MSEk =

T−k∑
t=0

‖xt+k − x̂t+k‖2 (S41)

R2
k = 1− MSEk∑T−k

t=0 ‖xt+k − x̄‖2
(S42)

where x̂t+k is the prediction at time t+ k, and x̄ the mean for this trial.

I LEARNING INPUT-DRIVEN NONLINEAR DYNAMICS

To bridge the gap between autonomous nonlinear dynamics (see Section 3.2) and real data, we
evaluated iLQR-VAE on an input-driven nonlinear system, the Duffing oscillator. We generated
Duffing trajectories that included a perturbation of the Duffing state half-way through. We then
embedded those into the spiking activity of 200 neurons (see below). We found that iLQR-VAE
could successfully learn the dynamics and infer the timing of the perturbations.
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Figure S3: (A) Top: example Duffing trajectories (100 time steps, dt = 0.03) starting from random
initial conditions. Bottom: negative ELBO during the course of training. (B) Top: spike raster
corresponding to an example test sample. Middle: first two principal components of the posterior
mean over firing rates (red), given the spiking data shown at the top. For comparison, the ground-
truth PCs in the first half of the trial (before the perturbation) are shown as black dots, with their
hypothetical unperturbed continuation shown as a dashed line. The second half of the ground-truth
PCs (after the perturbation) are shown in gray. Bottom: norm of the inferred input.

The dynamics of the Duffing oscillator are given by

ẋ1 = x2 ẋ2 = x1 − x3
1. (S43)

To generate each training sample, we integrated Equation S43 from two different random initial
conditions for 100 time steps each using a Runge-Kutta solver (RK4) with dt = 0.03. Example
such trajectories are shown in Figure S3A (top); note that each trajectory can be understood as the
evolution of the system in state-space for a given energy level of the oscillator. We then concatenated
those two trajectories to yield a single trajectory of 200 steps with a perturbation in the middle. We
then linearly mapped the low-dimensional oscillator onto a 200-dimensional state, before passing
it through the nonlinearity of Equation S7 to obtain a set of firing rates, which then gave rise to
observations via a Poisson process (Figure S3B, top).
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We generated 112 training and 112 testing trials in this way. We fit these data using iLQR-VAE with
n = 20, m = 4, and found that it could successfully infer the latent trajectories (see Figure S3B,
middle). Importantly, iLQR-VAE learned to fit most of the trajectories as an autonomously evolving
dynamical system, and only used inputs to explain the sudden change in the oscillator’s energy level
triggered by the perturbation (see Figure S3B, bottom). This shows that the model can successfully
disentangle ongoing dynamics from external inputs, suggesting that it is well-suited for identifying
input-driven dynamics in real data.

J COMPARISON OF LFADS AND ILQR-VAE ON A TOY INPUT INFERENCE
TASK

o1
ō1|o1

0 100
−0.2

0

0.2

0.9 1

true

learned

true ‖u‖

inferred ‖u‖

time [a.u.]

Im
(λ

)

Re(λ)

A B

Figure S4: Details of the sparse input inference in LFADS and iLQR-VAE. (A) Top: example
observations (black dots) and inferred posterior mean (blue line). Bottom: true and inferred inputs.
LFADS can infer the timing of the largest input, but also uses non-zero inputs during the rest of the
trial. (B) Comparison of the true (black) and learned (blue) eigenvalue spectra.

We used the LFADS implementation from https://github.com/google-research/
computation-thru-dynamics/tree/master/lfads_tutorial, which we modified
to include linear dynamics and Gaussian likelihoods. We then evaluated the quality of the input
reconstruction by measuring how much input variance was captured by the models. We report this
as the R2 from inferred to true inputs.

We used a generative model within the ground truth model class. For each dataset, we performed
a hyper-parameter search to choose the best-performing encoder architecture and learning rate for
LFADS.

Results of this experiment are summarized in Table S1. iLQR-VAE – which did not require any
hyperparameter tuning for these examples – inferred inputs more accurately for all dataset sizes and
trial lengths.

LFADS iLQR-VAE
S 1x1000 0.05± 0.02 0.94± 0.01
S 10x100 0.15± 0.06 0.84± 0.01
S 32x100 0.29± 0.01 0.83± 0.05
S 56x100 0.31± 0.08 0.80± 0.02
S 10x200 0.27± 0.01 0.93± 0.01
AR 56x100 0.28± 0.02 0.81± 0.02

Table S1: Comparison of iLQR-VAE and LFADS on 6 input inference tasks. Results are reported
as R2 (mean ± sem) over 3 random seeds for each.

Our results suggest that LFADS’ performance improves with larger amounts of data. More surpris-
ingly, LFADS also seems to perform better when the data is split into shorter trials. In particular,
we found it difficult to fit LFADS on the single long trial, but the dynamics could be learned more
accurately if this data was split into 10 trials of 100 steps. On the other hand, iLQR-VAE inferred
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Figure S5: Comparison of the Student (pink) and Gaussian (green) prior for learning a linear dy-
namical system driven by autoregressive inputs (AR) or sparse inputs. (A) Fit of the observations
using the Gaussian (top) and Student (bottom) priors. Both allow to fit the observations highly ac-
curately. (B) Inferred input norm for both priors. The temporal structure of the signal is very similar
in both cases, as the Student prior essentially becomes Gaussian for large values of ν. (C) Evolution
of the loss for both choices of prior. The loss curves are closely aligned, and both models converge
to a similar ELBO value. (D) Fit of the observations using the Gaussian (top) and Student (bottom)
priors. Both models allow to fit the observations, but the Student prior allows to obtain smoother
trajectories. (E) Inferred input norm for both priors. The Student prior is close to 0 at all times,
except when it requires a sharp input to explain the data. On the other hand, the Gaussian prior
requires a large variance to be able to fit sparse inputs, leading to non-zero inferred inputs at all time
points. (F) Evolution of the loss for both prior choices. The loss curve for the Student prior is lower
than the Gaussian one throughout training, and converges to a higher ELBO value.

inputs more accurately for longer trials. This is what we would expect if the model is well learnt, as
longer trials contain more information to fit the inputs accurately.

One important distinction between the two methods, which partly explains LFADS’ lowerR2, is the
prior it over inputs (auto-regressive prior for LFADS and Student for iLQR-VAE). In Figure S4 we
show an example of LFADS, on one of the test examples of the S 56x100 dataset. In this example,
LFADS infers its largest input concurrently to the ground truth input, but also infers small inputs
when there are none in the ground truth. This has a significant impact on the R2 metric. Note
however that this is not the only effect at play here, as emphasized by the lower performance on the
AR dataset. The impact of the choice of prior in iLQR-VAE is discussed further in Appendix K.

K COMPARISON OF THE STUDENT AND GAUSSIAN PRIORS

In this section, we compare the performance of the Gaussian and Student priors on two toy examples.
The first consists of data generated by a linear dynamical system (n = 3, m = 3, no = 10, Gaussian
likelihood) driven by autoregressive Gaussian inputs (close to the Gaussian prior). The second one
uses the same system, but driven by sparse inputs (closer to the Student prior). We find that in the
first example, both priors yield extremely similar results (see Figure S5(A-C)). Indeed, the Student
prior learns a very high value of ν ∼ 20, thus becoming nearly Gaussian.

In the sparse input case however, the Student prior allows to fit the data considerably better. As we
can see in Figure S5(D-F), the Gaussian prior learns a large variance to fit the sparse inputs, leading
to higher baseline noise than in the true system.

As shown here, the Student prior offers a more flexible model, as the Gaussian case is recovered
for large ν values. Note however that using the Gaussian prior ensures that the input term in the
iLQR cost function is always convex in u, which can facilitate the optimization and allow iLQR to
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converge faster in some cases. Moreover, in the case of autonomous dynamics (e.g Lorenz attractor
and Maze dataset) both priors will converge to the same solution.

L FURTHER DETAILS OF SINGLE TRIAL ANALYSES

L.1 BENCHMARKING AGAINST EXISTING METHODS

To allow for direct comparison with benchmarks reported Pei et al. (2021), we first used data
provided by the Neural Latents Benchmark (NLB) challenge, available at https://gui.
dandiarchive.org/#/dandiset/000128.

We used 1720 training trials and 510 validation trials, which were drawn randomly for each instanti-
ation of the model to avoid overfitting to test data. The risk of overfitting to the dataset was lowered
by the fact that iLQR-VAE requires very little hyperparameter optimization. For this experiment,
we fitted iLQR-VAE to the neural activity using a model with MGU dynamics (n = 60), a Student
prior over inputs (m = 15), and a Poisson likelihood (no = 182 neurons). We trained models on
trials spanning all reach conditions and restricting data to a time window starting 250 ms before and
ending 450 ms after movement onset, binned at 5ms. For regression to hand velocity, we introduced
a lag of 100ms between neural activity and hand velocity. As the test data used in the NLB chal-
lenge is not publicly available, the results we reported were not computed on the exact same data
split. However, the model performed highly consistently across random seeds, such that we expect
iLQR-VAE’s performance to be directly comparable to the results from Pei et al. (2021). To fit these
data, we ran iLQR-VAE on 168 CPUs for ∼ 6h, using a mini-batch size of 168 trials.

The co-smoothing metric used to assess how well the model fit the data is defined as log-likelihood
score :

1

nsp log 2

(
L(λ; ŷn,t)− L(λ̂n, ŷn,t)

)
(S44)

where the overall log-likelihood L is the sum of all the log-likelihoods evaluated at all points and
for all neurons, λ denotes the vector inferred time-varying firing rates, λ̂n is the mean firing rate for
neuron n and nsp is the total number of spikes.

L.2 FURTHER ANALYSES

A key feature of monkey M1 motor cortical recordings is the prevalence of rotational dynamics in
the data (Churchland et al., 2012). These can be captured using jPCA, a method developed to find
the subspace in which the dynamics are most rotational, which was recently generalized by Rutten
et al. (2020). Here, we found that we could uncover clean rotational dynamics from the single-trial
firing rates, similarly to Pandarinath et al. (2018).

jP
C

A
2

jPCA1

Figure S6: Projection of the neural activity of 200 movements
in the subspace defined by the top two jPCA axes. jPCA
finds the subspace capturing most rotations in the data, while
spanning the same space as the top 2 principal components.
Here, the jPCA subspace was found using the single-trial fir-
ing rates. Projection of the neural activity yields very clean
rotational trajectories.

M FURTHER DETAILS OF THE CONTINUOUS REACHING TASK ANALYSIS

M.1 DETAILS OF THE ANALYSES

For our analyses of the primate data in Section 3.4, we considered the first 22 minutes of the record-
ing session ‘indy 20160426’ from O’Doherty et al. (2018). We binned spikes at 25 ms resolution
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and considered all neurons with a firing rate of at least 2Hz. Behavioural data took the form of the
velocity of the hand of the monkey in the xy-plane and were extracted as the first derivative of a
cubic spline fitted to the position over time. We z-scored the hand velocity and shifted it by 120ms,
following on Jensen et al. (2021).

To fit iLQR-VAE, the resulting dataset was divided into 336 non-overlapping pseudo-trials of which
a random half were used to fit the generative model and the other half of the trials were used as
a held-out test dataset. We fitted a model with n = 50,m = 10 using the non-linear dynamics
described in Equation S4. The latent state was then mapped onto both the kinematics and neural
observations. We used a linear readout from latents to 2D kinematics variables, and a linear readout
following by a nonlinearity from latents to the firing rates of 130 neurons.

After fitting the iLQR-VAE to neural activity and behavior jointly, we then proceeded to infer u
from neural activity alone. Next, we computed the kinematic reconstruction error on the test dataset
as the fraction of variance captured in both x- and y- hand velocities.

Finally, we analyzed the inputs to the model after fitting, in relation to specific events in the task
and the behaviour. We defined ‘movement onset’ after each target onset as the time at which the
hand speed first exceeded 0.03 m s−1. We aligned the z-scored input u on each trial to target onset
and movement onset separately for visualization purposes. We performed a similar analysis for
hand speed and mean z-scored neural activity which were also z-scored and aligned to target and
movement onset for comparison with the control input.

M.2 COMPARISON OF ILQR-VAE AND BGPFA
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Figure S7: Comparison
of the firing rates inferred
by bGPFA and iLQR-VAE
on the first 100ms of the
continuous reaching task
data, for three different
neurons. bGPFA learns
smoother trajectories. On
the other hand, fitting
iLQR-VAE with a Gaussian
prior with no temporal
structure allows to capture
more variance in the firing
rates, which in turn leads
to a better decoding of the
kinematics.

As a further way of understanding the relative benefits and disadvantages of iLQR-VAE, we com-
pared its performance with bGPFA, a fully Bayesian extension of GPFA (Yu et al., 2009) that enables
the use of non-Gaussian likelihoods, scales to very large datasets, and was recently shown to out-
perform standard GPFA on this same continuous reaching dataset (Jensen et al., 2021). Importantly,
bGPFA makes different assumptions to iLQR-VAE, as it places a smooth prior directly on the la-
tents with no explicit notion of dynamics. We fit both methods using 10 minutes of data (chunked
into pseudo-trials for iLQR-VAE and as a continuous trial for bGPFA). For iLQR-VAE we then
performed inference and retrained the posterior covariance on the first minute of data whilst fixing
the generative parameters. We found that while both methods captured similar trends in the firing
rates, bGPFA yielded smoother estimates, but iLQR-VAE captured larger modulations (consistent
with the higher R2 when regressing from firing rates to hand velocity). Note that the firing rate
estimates here are not as smooth as for the Maze dataset (c.f. Figure 4A), because iLQR-VAE was
fit using a Gaussian prior over inputs with non-zero variance at all times, effectively implying an
autoregressive prior on the latent trajectories and firing rates.

From Figure S7, one can notice that bGPFA struggles to capture larger variations in the firing rate.
This suggests oversmoothing, and might explain why the method does not capture hand kinematics
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as well as iLQR-VAE (R2 = 0.6 for bGPFA and 0.76 for iLQR-VAE.) This is indeed what we see
in Figure S8.
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Figure S8: Ground truth hand velocity
(red) and decoded kinematics using iLQR-
VAE (blue) and bGPFA (dotted black). A lin-
ear decoder was trained on 9 minutes of data
and then evaluated on the first minute of the
recording (shown here). bGPFA struggles to
capture the biggest peaks in the velocity, con-
sistent with the smoother firing rates and the
lower R2.

N LINK TO KALMAN FILTERING

The Linear Quadratic Regulator and the Kalman filter (Kalman, 1964) are algorithms designed for
systems with linear dynamics and Gaussian noise. LQR finds the optimal feedback control law
to minimize a cost C in deterministic systems, while the Kalman filter yields an estimate of the
state from observations corrupted with process and observation noise. It is well-known that Kalman
filtering and LQR are dual of one another, and they can both be combined into LQG to yield an
optimal control law from noisy observations. Here, we explore another link between LQR and
Kalman smoothing, by showing how LQR can be used as a Kalman smoother. Moreover, in order to
gain insights into the learning process of iLQR-VAE, we explore different procedures for learning
the parameters of a Kalman filter.

LINEAR QUADRATIC CONTROL AS FILTERING

The Kalman smoother assumes dynamics of the form

zt+1 = Azt +BKwt (S45)
ot = Czt + vt (S46)

with w ∼ N (0, I), v ∼ N (0,Σv), and the initial condition is assumed to be generated by a
Gaussian distribution with known parameters z1 ∼ N (µ,Π).

On the other hand, LQR assumes the following fully-deterministic dynamics :

zt+1 = Azt +BIut (S47)
ot = Czt (S48)

with z1 known exactly.

Note than in the iLQR-VAE framework we have thus far only considered cases where no observed
external inputs were given. However these can be straightforwardly included as an additional B̂û
term in Equation S47 and Equation S45.

The Kalman smoother’s objective is to minimize the expected mean squared error between the in-
ferred latent state and the true state, E

[
‖x− x̂‖2

]
. As described in Aravkin et al. (2017), with linear

dynamics and Gaussian noise, this becomes equivalent to minimizing the following objective w.r.t
z:

L(z) = ‖Π−1/2(z1 − µ)‖2 +

T−1∑
t=1

‖BK(zt+1 −Azt)‖2 +

T∑
t=1

‖Σ−1/2
v (ot −Czt)‖2 (S49)
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where the first two terms correspond to the prior over the initial condition and smoothness of the
trajectory, and the last term represents the likelihood of the observations. Interestingly, this can be
related to the objective we minimize to find the posterior mean in iLQR-VAE (Equation 11):

L(u) = ‖Σ−1/2
0 u0‖2 +

T−1∑
t=1

‖Σ−1/2
u ut‖2 +

T∑
t=1

‖Σ−1/2
v (ot −Czt)‖2 (S50)

= ‖Σ−1/2
0 u0‖2 +

T−1∑
t=1

‖Σ−1/2
u (zt+1 −Azt)‖2 +

T∑
t=1

‖Σ−1/2
v (ot −Czt)‖2. (S51)

The right-hand sides of Equation S49 and Equation S50 become identical when Σu = BK and
Σ0 = Π. Note that the introduction of the BI matrix in Equation S45 unties the two formulations
slightly by allowing for further mixing between the input channels that isn’t accounted for by the
prior. In the examples we consider next, we therefore setBI = I .

The above equations show how LQR can be used to solve the standard Kalman filtering problem,
with the key difference being that the optimization is performed over inputs u = {u0, . . . ,uT−1}
rather than latent trajectories z = {z1, . . . ,zT } directly. This is illustrated in Figure S9(A), where a
Rauch-Kung-Striebel (RKS) smoother and LQR were ran on the same set of 8-dimensional observa-
tions arising from an 8-dimensional linear dynamical system, and inferred the same latent trajectory
given the ground-truth parameters. As we only use LQR to parametrize the mean of the posterior
distribution, we trained the recognition model for 100 steps to get the uncertainty over the latents,
which was very similar to the output of the RKS smoother.

LEARNING A KALMAN FILTER

We then proceeded to learn the parameters of the models using either iLQR-VAE, an Expectation-
Maximization (EM) procedure, or direct minimization of the negative log likelihood of the data
(Figure S9B-C).

Interestingly, the EM algorithm is closely related to iLQR-VAE, since the E-step finds the latent tra-
jectories minimizing Equation S49, when iLQR-VAE solves Equation S50 in an inner optimization
loop. While there exists an analytical solution for the M-step in the case of the Kalman filter, this
does not generalize to nonlinear dynamics and non-Gaussian noise. Therefore, we used a gradient
descent procedure for the maximization step.

Both of these were performed using Adam with a learning rate of 0.02, and with initial parameters
drawn from the same distributions. We see in Figure S9C that iLQR-VAE reaches a smaller NLL
in considerably fewer iterations than gradient descent, which we hypothesize is due to the good
preconditioning given by iLQR (discussed in Figure 1). Note however that the cost of one iLQR-
VAE iteration is higher than the direct computation of Equation S49.

In this section, we have shown in a simple linear-quadratic example how iLQR-VAE performs filter-
ing by inferring the process noise as inputs. While this is undoubtedly an unconventional approach,
it becomes particularly valuable in cases where dynamics are non-linear and the noise non-Gaussian.
Indeed, in such cases the problem of learning an estimator for the latent state is a very difficult one,
typically solved using methods such as particle filtering or unscented Kalman filters (Doucet and
Johansen, 2009; Wan et al., 2001). iLQR-VAE offers another way to solve this problem, with close
links to the aforementioned approaches.

O ANALYSIS OF THE INFERENCE GAP

In order to evaluate the benefits of defining the recognition model implicitly through the generative
parameters, we compared iLQR-VAE to a more standard sequential variational auto-encoder, using
a bidirectional recurrent neural network as the recognition model. We generated data from the same
system as in Figure 3, in the form of 76 trials of 100 time steps. We used the same generative
model in both cases (linear dynamics with n = 3, m = 3, no = 10, Student prior), such that the
only difference lay in the choice of recognition model. We compared the ELBO to a more accurate
estimate of the log-likelihood, the Importance Weighted Autoencoder (IWAE) bound (Burda et al.,
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Figure S9: Comparison of the posterior mean of a Kalman smoother and LQR. We ran both
LQR and a Kalman smoother on noisy observations generated by a latent system (see text for de-
tails). (A) The Kalman smoother (blue) and LQR (dotted red) both inferred the same posterior mean
for the latent trajectories, matching the true latents (black) almost perfectly. The posterior uncer-
tainty is shown for both cases on half of the data. The iLQR-VAE uncertainty was obtained by
optimizing the variance of the recognition model for 200 iterations, and then drawing 1000 samples
from the recognition model. (B) We compared learning the parameters of the posterior distribution
using iLQR v.s direct minimization of the NLL. On unseen data, both were able to converge to a
solution close to the smoothed output trajectory. Note that we stopped the optimization after 8000
iterations. (C) Learning curves of the direct optimization and iLQR-VAE on the same 168 training
trials. Note that we used Adam with the same learning rate of 0.02 in both cases, in order to directly
compare the effect of the gradient steps. Both x and y axes use a logarithmic scale.

2015), which is computed as

LIWAE = Eu1,..un∼q(u|o)

[
log

(
1

k

k∑
i=1

p(o, zi)

q(ui|o)

)]
(S52)

where we used Monte-Carlo sampling with 1000 samples to evaluate the expectation. This then
allowed us to compute the inference gap (Cremer et al., 2018) of both models as LIWAE −ELBO.
As shown in Figure S10, iLQR-VAE has a smaller inference gap throughout training, leading to
faster and more robust convergence. This confirms the intuition that keeping the recognition and
generative models in sync throughout training reduces the inference gap.
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Figure S10: Comparison
of iLQR with a biRNN
recognition model. (A-
B) Loss and inference gap as
a function of iteration number
(starting from iteration 20)
for iLQR-VAE (blue) and the
biRNN model (pink). (C) In-
ferred input norm at the end
of training for iLQR-VAE and
the biRNN model. Ground
truth input is shown in dotted
black lines. (D) Inferred out-
put at the end of training for
iLQR-VAE and the biRNN
model. Both models explain
the observations (grey dots)
well, but iLQR-VAE captures
the sharp transitions better.
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