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Abstract

Neurons are typically sensitive to a small fraction of stimulus space. If the environment changes,
making certain stimuli more prevalent, neurons sensitive to those stimuli would respond more often
and therefore have a higher average firing rate if the stimulus-response mapping remains fixed.
However, sufficiently prolonged exposure to the new environment typically causes such neurons to
adapt by responding less vigorously. If adaptation consistently returns the average firing rate of
neurons, or populations of similarly tuned neurons, to its value prior to environmental shift, it is
termed firing-rate homeostasis. Another feature of adaptation in sensory cortex is stimulus specific
adaptation, under which neurons not only adapt their responsiveness, but also reshape their tuning
curves away from overrepresented stimuli. Here, we present a normative explanation of firing-rate
homeostasis grounded in the efficient coding principle. Unlike previous theories based on efficient
coding, we formulate the problem in a computation-agnostic manner, enabling our framework to
apply far from the sensory periphery. We show that homeostasis can provide an optimal solution to
a trade-off between coding fidelity and the metabolic cost of neural firing. We provide quantitative
conditions necessary for the optimality of firing-rate homeostasis, and predict how adaptation
should deviate from homeostasis when these conditions are violated. Based on biological estimates
of relevant parameters, we show that these conditions do hold in areas of cortex where homeostatic
adaptation has been observed. Finally, we apply our framework to distributed distributional codes,
a specific computational theory of neural representations serving Bayesian inference. We show that
the resultant coding scheme can be accomplished by divisive normalisation with adaptive weights.
We further demonstrate how homeostatic coding, coupled with such Bayesian neural representations,
explains stimulus-specific adaptation, as observed, e.g., in the primary visual cortex.

1 Introduction
Neurons act as noisy feature detectors. Moreover, when the responsiveness of a neuron increases, the
strength of its response noise, or trial-to-trial variability, typically grows sublinearly and more slowly
than its average response; for Poisson-like firing, for example, response noise grows as the square root
of the mean response. The neuron can therefore increase its signal-to-noise ratio by increasing its
responsiveness or response gain. However, this increase in coding fidelity comes at the cost of an
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elevated firing rate, and thus higher metabolic energy expenditure. From a normative perspective,
coding fidelity and metabolic cost are thus two conflicting forces. In this paper, we ask how neurons
should adjust their response gains in order to optimally balance these two forces, irrespective of the
computations they perform or the complexity of the features they detect. In particular, we address the
following question: given a neural population with a set of arbitrary tuning curve shapes, how should
neurons optimally adjust their gains depending on the stimulus statistics prevailing in the environment?

Suppose an environmental shift makes a feature to which a group of neurons is sensitive more
prevalent. Over time, that feature will be presented more often, in turn increasing the average firing
rate of these neurons. Typically, the neurons will then adapt by reducing their responsiveness (Solomon
and Kohn, 2014; Clifford et al., 2007; Benucci et al., 2013). A special case of such adaptation is firing
rate homeostasis (Desai, 2003; Turrigiano and Nelson, 2004; Maffei and Turrigiano, 2008; Hengen et al.,
2013), in which adaptation brings the average firing rate back up to the rate prior to the environmental
shift. Thus, under firing rate homeostasis, neuronal populations maintain a constant stimulus-averaged
firing rate in the face of changes to the environment (Benucci et al., 2013; Hengen et al., 2013; Maffei
and Turrigiano, 2008).

There are multiple levels at which homeostatic results can be observed. Firstly, there is population
homeostasis, in which the stimulus-average firing rate of an entire population of neurons remains
constant, without individual neurons necessarily holding their rates constant (Slomowitz et al., 2015).
Secondly, there is what we term cluster homeostasis. In this form of homeostasis, stimulus-average
firing rate of groups or clusters of neurons with similar stimulus preferences remains stable under
environmental shifts, but the firing rate of individual neurons within a cluster can change (Benucci
et al., 2013). Lastly, homeostasis can occur at the level of individual neurons, in which case the firing
rate of each individual neuron is kept constant under shifts in the environment (Marder and Prinz,
2003). Note that these three forms are progressively stronger.

Previous normative explanations for firing rate homeostasis often focus on the necessity of avoiding
hypo- or hyper-excited states (Turrigiano and Nelson, 2004; Maffei and Turrigiano, 2008; Keck et al.,
2013; Hengen et al., 2013). Although this might explain homeostasis at the population level, it does
not adequately explain homeostasis at a more fine-grained level. Our task in this paper is therefore
to provide a normative account of homeostasis at levels below that of an entire population with
heterogeneous stimulus tuning.

Specifically, our theory provides a normative account of firing rate homeostasis at the level of clusters
of similarly tuned neurons. Furthermore, as we will show, when coupled with a specific computational
theory of sensory representations (which determines tuning curve shapes), it further predicts the typical
finding that such adaptations are stimulus specific and shift tuning curves away from more prevalent
stimuli. In stimulus specific adaptation a neuron may adapt by a greater reduction (or possibly an
increase) in responsiveness to some stimuli than others. In particular, the suppression of firing rate is
greater for test stimuli that are closer to an over-represented adaptor stimulus than for test stimuli
that are further away (Kohn, 2007; Schwartz et al., 2007). In the case of a one-dimensional stimulus
space, this causes a repulsion of tuning curves away from the adaptor.

To address our normative question regarding the optimal adjustment of responsiveness, we work
within the framework of efficient coding theory (Attneave, 1954; Nadal and Parga, 1999; Laughlin, 1981;
Barlow, 2012; Linsker, 1988; Ganguli and Simoncelli, 2014; Wei and Stocker, 2015; Atick and Redlich,
1990). Efficient coding theory begins by asking two questions: What is this neural system attempting
to encode, and what features of biology constrain the quality of its encoding? We can then compute
(analytically or numerically) the optimal encoding subject to the posited biological constraints and
costs. Under the assumption that natural selection has acted to optimise performance, this solution
serves as a prediction for encoding properties of real neurons.

Concretely, the Infomax Principle (Linsker, 1988; Ganguli and Simoncelli, 2014; Wei and Stocker,
2015; Atick and Redlich, 1990) states that sensory systems optimise the mutual information between a
noisy neural representation and an external stimulus, subject to metabolic constraints. In order to do so,
the neural system should exploit the statistics of its local environment (Simoncelli and Olshausen, 2001).
A non-adaptive system that performs well in one environment may perform poorly in an environment
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with different stimulus statistics. Efficient coding theories can therefore be used, in particular, to predict
how sensory systems should adapt to changes in the environment statistics (Wei and Stocker, 2015).

We use the mutual information between the stimulus and the neural response as a measure of
coding fidelity, and the expected number of spikes fired as a measure of metabolic cost. We show
that when neurons are highly selective and population responses have a high-dimensional geometry,
optimal gains yield firing rate homeostasis across environments; in other words, average firing rates
are maintained due to optimal gain adjustments, despite changes in the environmental statistics. Our
work complements and extends previous theoretical work, in particular that of Ganguli and Simoncelli
(2014). A novelty of our framework is that we formulate the problem in a way that is agnostic of the
computations that the population is designed to perform, which dictate the shapes and arrangement of
its tuning curves. We thus allow the population to have tuning curves of arbitrary configuration and
shape, possibly defined on a high-dimensional stimulus, but do not optimise their shapes or placements.
Ganguli and Simoncelli, on the other hand, did optimise tuning curve widths and placements, but
only for the case of a one-dimensional stimulus and a homogeneous (up to stimulus reparametrisation)
population of unimodal or sigmoidal tuning curves. Additionally, our framework allows us to consider
more general noise models than simple Poissonian firing, in particular correlated and power-law noise.

Having shown the optimality of homeostatic codes without making assumptions on the nature of
the neural representation and computation, we apply our framework to a Bayesian theory of neural
computation, namely the Distributed Distributional Code (DDC) (Vertes and Sahani, 2018). The theory
of DDCs assumes that the brain possesses an internal generative model of sensory input arising from
unobserved latent variables. The firing rates of neurons are then assumed to directly represent the
Bayesian posterior expectation of a rich set of (fixed) functions of the latent variables. Combining
the theory of DDCs with our normative results yields what we call a homeostatic DDC. Homeostatic
DDCs are able to account for stimulus specific adaptation effects which cannot be fully accounted for in
previous efficient coding frameworks (Wei and Stocker, 2015; Ganguli and Simoncelli, 2014; Snow et al.,
2016). A special case of a homeostatic DDC is a form of representation we term Bayes-ratio coding. We
show that Bayes-ratio coding has attractive computational properties: it can be propagated between
populations without synaptic weight adjustments, and it can be achieved by divisive normalisation
with adaptive weights (Carandini and Heeger, 2012; Westrick et al., 2016).

We start the next section by introducing the basic mathematical framework we use to address
our normative question. This includes formulating the notion of neuron clustering based on stimulus
selectivity. We then show that our framework predicts that the firing rate of each cluster should remain
constant subject to shifts in environmental statistics, with individual neurons free to shuffle their
average rates. We additionally demonstrate that our framework can account for a wide distribution of
mean single-neuron firing rates as observed in cortex. We show that the conditions necessary for our
theory to apply are expected to hold in cortical areas, in particular in the primary visual cortex (V1).
We then extend our analysis to apply to the cases of correlated and power-law noise, and numerically
validate the quality of our homeostatic solutions. Lastly, we apply our theory to DDC representational
codes, showing how homeostatic DDC’s can account for stimulus specific adaptation effects observed
experimentally.

2 Results

2.1 Theoretical framework
We consider a population of N neurons, responding to the (possibly high-dimensional) stimulus s, with
marginal distribution P (s). The distribution P (s) is determined by the environment; accordingly, if
the environment changes (making certain stimuli more or less prevalent), so will P . We assume that
our population engages in rate coding using time bins of a fixed duration, and denote the vector of
joint population spike counts in a coding interval by n = (n1, . . . , nN ).

We are interested in how changes in the stimulus distribution, P , affect the responsiveness of neurons.
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We therefore adopt a shape-amplitude decomposition of the neural tuning curves. The tuning curve of
the i-th neuron, hi(s), is factorised into a representational curve, Ωi(s), and a gain, gi:

hi(s) = giΩi(s) = gain × representational curve.

Fig. 1 (a) demonstrates the effect of changing the gain while keeping the representational curve constant.
Importantly, we do not make any assumptions on the shape of the representational curve: Ωi can be
any complex (e.g. multi-modal, discontinuous) function of the possibly high-dimensional stimulus,
and can thus represent any computation. This makes our treatment more general than other efficient
coding frameworks (e.g. (Ganguli and Simoncelli, 2014)), which place tight constraints on the shape
and configuration of the tuning curves. In particular, this generality enables our theory to apply to
populations located deep in the processing pathway, and not just to primary sensory neurons.

(a)
h(s)

s

Increasing g

(b)

g

Metabolic
Cost, E

Coding fidelity, I

L = 2µI − E

gopt

Figure 1: (a) As the gain, g, of a neuron is increased, the shape of its tuning curve remains the
same, but all firing rates are scaled upwards. The cartoon shows a one-dimensional example, but our
theory applies to general tuning curve shapes and joint configurations of population tuning curves, on
high-dimensional stimulus spaces. (b) Cartoon representation of our objective function. Neural gains
will be chosen to maximise an objective function, L, which is the weighted difference between mutual
information, I, which captures coding fidelity, and metabolic cost, E, given by average population
firing rate.

Neural responses n are taken to be noisy encoding of neural tuning curves h(s), n|s ∼ Pnoise(n|h(s))
with E[n|s] = h(s). We consider a number of different noise models, including correlated and power-law
noise, but begin with the simplest case of uncorrelated Gaussian noise with Poisson-like scaling of
variance. Our framework is summarised in Fig. 2.
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Stimulus s ∼ P (s) Environment

Representational
curves Ωi(s)

Tuning curves
hi(s) = giΩi(s)

Neural responses
n ∼ Pnoise(n|h(s))

Computation

×gi

Noise

Figure 2: The basic framework for our analysis. The environment gives rise to a stimulus distribution P
from which the stimulus s is drawn. Conceptually, the brain performs some computation on s yielding
representational curves Ωi(s). These are multiplied by adaptive gains, gi, to yields the tuning curves
hi(s). The actual, single-trial neural responses are noisy emissions based on hi(s).

We theorise that neurons adapt their gains to maximise an objective function, L0(g), that trades
off the metabolic cost of neural activity with the information conveyed by the responses (Levy and
Baxter, 1996; Ganguli and Simoncelli, 2014):

L0(g) := 2µI(n; s)−
N∑
i=1

E[ni] = Information − Metabolic cost. (1)

Here, I(n; s) is the mutual information between the stimulus and response. The second term penalises
the average population spike count, as a measure of metabolic energy cost, and µ > 0 controls the
information-energy trade-off. This trade-off is illustrated in Fig. 1. In the following sections we will
optimise an approximation to L0 to make predictions about the behaviour of the optimal gains. Here
we make a few remarks on our theoretical framework and its assumptions.

First, note that, because Ωi depend deterministically on the stimulus s, and in turn fully determine
the statistics of ni, we have the identity I(n; s) = I(n;Ω). This means that the coding fidelity term in
the objective function can equivalently be interpreted, without any reference to the low-level stimulus,
as the mutual information between the population’s noisy responses, n, and its ideal, noise-free outputs
(up to scale), Ω, as determined by the computational goals of the circuit.

Next, note that adjusting gains does not restrict the computations which can be performed by
downstream populations, as adjustments in gains can be compensated for by reciprocal adjustments in
readout weights. Consider a downstream neuron which receives synaptic input from the population
with synaptic weights wi. The response of this neuron is then a nonlinear function of its total input∑

j wjhj(s), which, given our decomposition, can be written as
∑

j wjgjΩj(s). We therefore see that
any modification of the gains, gi, can be compensated for by a modification of the synaptic weights, wi,
by keeping the product of the two the same. This demonstrates that fixing Ωi and optimising L0 in the
gains provides no additional constraints on what downstream neurons encode in their responses. Thus,
we not only do not constrain the representations of the population in consideration, but also do not
constrain the representations of downstream read-out populations.

Finally, note that reciprocal adjustment of synaptic weights with the gains (in such a way to keep
wjgj constant) will keep constant the synaptic currents and therefore also the metabolic cost of synaptic
transmission. This justifies our choice not to explicitly include synaptic transmission costs in our
objective function, and take the metabolic cost term to be linear in the firing rates of the population.

2.2 Poisson-like noise model and upper bound to mutual information
We start by considering the simplest case of an uncorrelated Gaussian noise model with Poisson-like
scaling of variance (i.e., with unit Fano factor). According to this noise models individual neuron
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responses, ni, are conditionally independent with conditional distribution

ni|s ∼ N (hi(s), hi(s)). (2)

Later in Sec. 2.7, we show that, to a good approximation, the solutions for this model extend to the
case of true Poisson noise.

We consider the problem of calculating the optimal gains {gj}Nj=1 by maximising our target
functional L0 (Eq. (1)). Unfortunately, analytic maximisation of mutual information is intractable. In
the tradition of efficient coding theory (Brunel and Nadal, 1998; Ganguli and Simoncelli, 2014; Linsker,
1988), we will therefore consider optimising a bound on L0. We decompose the mutual information as
I(s;n) = H[n]−H[n|s]. The marginal entropy term H[n] can be upper bounded by the entropy of a
Gaussian with the same covariance,

H[n] ≤ 1

2
ln det(2πeCov(n))). (3)

Making this replacement gives us a new objective function

L(g) = 2µ

(
1

2
ln det(2πeCov(n)))−H[n|s]

)
−

N∑
j=1

E[nj ] ≥ L0(g). (4)

Note that L depends tacitly on P (s) and the tuning curves Ωi(s). However, one can show (see App. A.1)
that L depends on P and Ωi only through the following collection of parameters:

ωj := E[Ωj(s)] =

∫
Ωj(s)P (s)ds, (5)

CVj :=

√
Var(Ωj(s))

E[Ωj(s)]
, (6)

ρij :=
Cov[Ωi(s),Ωj(s)]√

Var(Ωi(s)) Var(Ωj(s))
. (7)

These parameters characterise different aspects of the population response statistics: ωj is the pre-
modulated (i.e., without multiplying by gi) average spike count; CVj is the coefficient of variation
of Ωj(s), or equivalently of hj(s); and ρ is the signal correlation matrix, i.e., the matrix of Pearson
correlation coefficients of the vector Ω(s), or equivalently h(s) (note that CVj and ρij are independent
of the gains, as the Ωi’s in their definition can be replaced with hi’s with no effect). As we show in
App. A.1, in terms of these parameters, L(g) is given by:

L(g) = µ ln det(IN + P ω̂ĝ)−
N∑
j=1

gjωj + const., (8)

where
P := ĈV ρ ĈV (9)

and IN is the N ×N identity matrix. We use a hat to denote a vector turned into a diagonal matrix (in
other words, v̂ denotes the N ×N diagonal matrix with the elements of the vector v on its diagonal).
We will now consider the form of ρ corresponding to a population composed of clusters of similarly
tuned neurons.

2.3 Clustering neurons based on similarity of response
In cortex, it is found that many neurons located spatially nearby to one another also have very similar
response properties (Obermayer and Blasdel, 1993). We will call a collection of neurons which have
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very similar representational curves (but not necessarily similar gains) a cluster. To gain intuition
and allow for analytic solutions, we will subsequently adopt a toy model in which the neurons in the
population are sorted into K such clusters, each containing k neurons (thus N = Kk). In this toy
model, neurons within a cluster have very similar stimulus tuning, but neurons in different clusters
are tuned differently. This approximates a more realistic regime in which there is a gradual smooth
transition from more similar to less similar tuning curves within the entire population.

More concretely, we treat the representational curves of the neurons in cluster a as small perturbation
to a cluster-wide representational curve Ω̃a(s). Signal correlations between neurons within a cluster
are therefore close to 1. Similarly, signal correlations between neurons in distinct clusters a and b
are approximately given by the correlation between Ω̃a(s) and Ω̃b(s), which we denote by ρ̃ab (which
jointly form a K ×K matrix, ρ̃). More precisely, we assume the correlation between two neurons i and
j, belonging to clusters a and b, respectively, is given by

ρij = ρ̃ab − ϵ Tij , (10)

where ϵ is a small parameter controlling the deviation from perfect clusters, and T is an arbitrary
symmetric N × N matrix (subject only to the requirement that the full matrix, ρ, remains a valid
correlation matrix). We will analogously denote the mean and coefficient of variation of Ω̃a(s) by
ω̃a and C̃Va (defined as in Equations (5)–(7), but with Ω’s replaced with Ω̃’s). We will assume that
the coefficient of variation of all representational curves in cluster a is approximately C̃Va, and their
pre-modulated firing rates are approximately ω̃a. Finally, let c(a) denote the set of indices for neurons
belonging to cluster a.

We show in App. A.2 that
L(g) = L̃(g̃) + ϵLϵ(g) +O(ϵ2), (11)

where g̃a ≡
∑

i∈c(a) gi is the sum of gi over cluster a, and

L̃(g̃) = µ ln det
(
IK + P̃ ˆ̃ω ˆ̃g

)
−

K∑
a=1

ω̃ag̃a, (12)

where
P̃ =

ˆ̃
CV ρ̃

ˆ̃
CV. (13)

Note that L̃(g) is identical in form to the expression (8), with all quantities relating to individual
neurons replaced by the corresponding quantities for a cluster. This is because for clusters of identically
tuned neurons (corresponding to ϵ = 0) neurons in a cluster can be considered as a single coherent
unit whose firing rate is given by the sum of the firing rates of its neurons. Furthermore, in this
approximation, the efficient coding objective function is indifferent to the precise distribution of firing
rates among the neurons of a cluster, as long as the total rate of the cluster is held fixed.

We therefore approximate the maximisation of the total objective function L as follows. We first
specify the cluster firing rates by maximising L̃(g̃). We then specify the firing rates of individual
neurons within a cluster by maximising Lϵ(g), subject to the constraint that the neuron firing rates in
each cluster must sum to that cluster’s previously optimised total firing rate. Although this is not the
same as maximising the total objective function L, this approximation is justified since terms of order
ϵ and above have negligible effect on determining the cluster firing rates, but (as we will see in Sec. 2.5)
are crucial for breaking the degeneracy within an individual cluster.

2.4 Optimal cluster gains display homeostasis across environments
To obtain an analytic approximation for the cluster gains, we apply an additional condition, discussed
further in Sec. 2.6, that

∆ = (µ
ˆ̃

CV ρ̃
ˆ̃

CV)−1 ≪ 1. (14)
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The matrix ∆−1 characterises the structure of signal-to-noise ratio (SNR) in the space of population
responses, and so our condition can be interpreted as the requirement that signal-to-noise ratio is strong.
In App. A.3 we derive perturbative solutions for the cluster gains that maximise Equation (12). In the
first approximation, i.e., to zeroth order in ∆, we find

g̃a ≈ µ

ω̃a
:= g̃(0)a . (15)

To see the significance of this result, consider the stimulus-averaged spike count of cluster a. This is
given by

E

 ∑
i∈c(a)

ni

 =
∑

i∈c(a)

E[hi(s)] =
∑

i∈c(a)

giωi

≈ g̃aω̃a ≈ µ.

Thus, in the leading approximation, the stimulus-average spike count of cluster a is given by the
constant µ. Importantly, this is constant across both clusters and environments. In particular, the
zeroth-order solution yields homeostasis of cluster firing rates. This is depicted in Fig. 3a.

We also note that, as long as the SNR structure, ∆, remains fixed between two environments, optimal
gains imply exact homeostasis of each cluster’s average firing rate between environments, irrespective of
the size of ∆ and how pre-adaptation mean rates, ω̃a, change between the two environments. However,
unless ∆ is small, firing rates are not equalised across clusters in the optimal solution, in general.

We also calculated the first-order correction to the homeostatic solution. This is given by

g̃a ≈ µ

ω̃a

(
1− [ρ̃−1]aa

µC̃V
2

a

)
=

µ

ω̃a
(1−∆aa) := g̃(1)a . (16)

which (assuming ∆aa are small) yields approximate homeostasis, with small variations depending
on the correlational structure between clusters and how that structure shifts between environments.
Furthermore, inspired by the approximate homeostatic solution, we also numerically optimized Eq. (12),
within a one-parameter family of putative solutions which by construction yield homeostasis. These
solutions are of the form Eq. (15) with the constant µ replaced by an a priori unknown scalar variable,
χ, which we numerically optimised; we denote the resulting solution by g̃homa . In Sec. 2.8, we compare
the performance of these solutions, the first and zeroth order approximations given above, as well as to
numerically optimised gains.

2.5 Distribution of firing rates within neuronal clusters
Having derived an analytic approximation to the cluster firing rates g̃, we next maximise the perturbation
term Lϵ(g) in Eq. (11), subject to the constraint that the sum of gains within a cluster equals the
obtained cluster solution, i.e.,

∑
i∈c(a) gi = g̃a. Since the term L̃ depends only on the sum of the

gains in a cluster, there is a great deal of redundancy in potential optimal solutions of single-neuron
gains. The term Lϵ(g) acts to break symmetry within the cluster and yield a unique optimal solution.
However, since Lϵ(g) is small and relatively flat, this symmetry breaking yields a solution with broadly
heterogeneous mean firing rates across the neurons in a cluster, despite (approximately) equal total
firing rate across clusters.

We show in App. A.4 that, to first order in ϵ and zeroth order in ∆, individual neural gains in the
a-th cluster are given by the following constrained maximisation problem, which is a quadratic program
in g:

min
g

∑
i,j∈c(a)

giρijgj (17)
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Figure 3: (a) Firing rate homeostasis at the level of clusters of similarly tuned neurons. We consider
three environments, indexed by colour. Across these environments, the pre-modulated cluster rate
ω̃ is different, as is the functional L̃(g̃). However, the argmax of the target function is so as to keep
the product ω̃g̃ approximately constant (here depicted as area of the corresponding rectangle). Since
this product is the cluster firing rate, this strategy yields homeostasis. (b) The distribution of firing
rates within a cluster of neurons. The densities obtained here were obtained by averaging over 10, 000
random draws of the within-cluster correlation matrix ρ using the method described in appendix 3.1.
This method uses two parameters, (α, q). The values of (α, q) were as follows: blue (10, 0.7); orange
(10, 0.9); green (20, 0.9). We fix g̃ = 10 and k = 100 throughout.

subject to the constraints ∑
i∈c(a)

gi = g̃a, gi ≥ 0. (18)

Just as the correlation between clusters was the dominant force in determining the firing rates for each
cluster, the dominant force in determining firing rates within a cluster is the correlational structure
of the cluster itself, and not correlations between clusters. Note that we can interpret this quadratic
program as aligning the rates within a cluster with the direction of minimal signal correlation, thereby
maximising the information conveyed by the population.

We solved Eq. (17) numerically for correlation matrices ρ which were generated to have a high level
of correlation within clusters; specifically, within each cluster ρ has a large eigenvalue with eigenvector
closely aligned to the vector with all components equal to 1 (see Sec. 3.1). The firing rate distributions
resulting from the numerically optimised gains are shown in Fig. 3b. The three lines in the plot
correspond to different parameter values used to generate the correlation matrix ρ within the cluster.
Note importantly that the firing rate is plotted on a logarithmic axis. Firstly, we see that maximising
Lϵ leads to a diverse range of firing rates within each cluster. In particular, the distribution of rates
spans multiple orders of magnitude, in agreement with cortical observations (e.g. (Slomowitz et al.,
2015; Hengen et al., 2013; Maffei and Turrigiano, 2008)). Furthermore, the distributions we found
are bimodal. The more prominent peak yields an approximately log-normal distribution consistent
with empirical findings in cortex (Buzsáki and Mizuseki, 2014). Given that the smaller mode occurs
between extremely small firing rates, 10−3 to 10−7 Hz, it is reasonable to expect neurons in this mode
to be essentially silent during experimental observations and remain undetected. Our theory therefore
predicts that a significant but variable fraction of cortical neurons are silent at any given sensory
environment, and that which neurons are silent will shuffle following shifts in the environment (and
subsequently changes in ρ).
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2.6 Conditions for the validity of the homeostatic solution hold in cortex
In this section, we consider conditions under which the homeostatic solution, Eq. (15), provides a
good approximation to the optimal gains. We obtained this solution, and the first order correction to
it, Eq. (16), by expanding in ∆ (Eq. (14)). The rigorous condition for the validity of this expansion
requires that ∆ is small in norm (i.e., that its largest eigenvalue is small). Here we instead consider
conditions under which the mean eigenvalue of ∆ is small, i.e., that tr(∆)/K is small. Note that
g
(1)
a = g

(0)
a (1−∆aa). If the eigenbasis of ∆ is unaligned with the standard basis, we expect the diagonal

elements ∆aa to be clustered around tr(∆)/K. Thus, showing that tr(∆)/K will be small indicates
that the first-order correction terms will be small.

By Eq. (14), we have that
1

K
tr(∆) =

1

K

K∑
a=1

ρ̃−1
aa

µC̃V
2

a

. (19)

We will thus obtain estimates for µ, C̃V, and ρ̃. Qualitatively, requiring that (19) is small requires that
firing rates of each cluster are sufficiently high, each cluster is selective in its response to stimuli, and
neural responses correspond to a high dimensional geometry.

• We see from the zeroth order solution (Eq. (15)) that µ is approximately equal to the average
spike count of the neuron cluster over the rate coding time-interval. Condition (14) requires
that the stimulus-averaged firing rate of all clusters are sufficiently high. A wide range of mean
firing rates have been reported in cortex. Here we focus on firing rates in rodent V1 during free
behaviour. Reported values tend to range from 0.4 Hz (Greenberg et al., 2008) to 14 Hz (Parker
et al., 2022) with other values lying in a tighter range of 4-7 Hz (Hengen et al., 2013; Szuts et al.,
2011; Torrado Pacheco et al., 2019). Therefore, for rodent V1, a firing rate of 5 Hz is reasonable.
Assuming a coding interval of 0.1 seconds, and a cluster size of k = 20, we obtain µ ≈ 10. If firing
rates were significantly different, a similar value of µ could be achieved by scaling clusters up or
down.

• The coefficient of variation C̃V can be seen as a measure of sparseness of responses. Our condition
therefore requires that neurons are selective in their responses and only respond to a small fraction
of stimuli. To see this, consider a toy-model in which the cluster responds at fixed level to a
fraction pa of stimuli and is silent otherwise. In this case, C̃V

2

a = (1− pa)/pa ≈ 1/pa for small pa.
Reference (Lennie, 2003) places the fraction of simultaneously active neurons (which we use as a
proxy for the response probability of a single cluster) at under 5%. This yields an estimate of
C̃V

2 ≈ 20. The Bernoulli distribution is particularly sparse, and so we take C̃V
2 ≈ 10 as a more

conservative estimate.

• ρ̃ is the signal correlation matrix of neuron clusters. [ρ̃−1]aa can be seen as a measure of the extent
to which cluster a shares its representation with other clusters, i.e., redundancy in representation;
[ρ̃−1]aa ≥ 1, with equality if and only if cluster a has zero signal correlation with every other
cluster. Many traditional efficient coding accounts predict zero signal correlation between neurons
(in the low noise limit) (Barlow, 2012; Nadal and Parga, 1994), providing an additional normative
justification for low signal correlations. This is known as a factorial code (Nadal and Parga, 1999).

However, complete lack of signal correlations is not necessary for our condition to hold; we
merely require a sufficiently slow decay of the eigenvalue spectrum of the signal correlation
matrix. This condition is geometrically equivalent to neural responses forming a high-dimensional
representation of stimuli.

Stringer et al. (Stringer et al., 2019) found that, for high-dimensional (ecological) stimuli, the
signal correlation matrix possesses a 1/n spectrum. Again, assuming that the eigenbasis of ρ̃ does
not align with the standard basis, we expect the values of ρ̃−1

aa to be clustered around tr(ρ̃−1)/K.
In this case, for K large, we obtain the estimate ρ̃−1

aa ≈ tr(ρ̃−1)/K ≈ ln(K)/2. (see App. A.5)
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Given the slow logarithmic increase with K, and the above estimated for µ and C̃V, we find that
our conditions holds even for very large neural populations. For example, suppose we take the
entire human V1 as our neural population. This contains roughly 1.5× 108 neurons (Wandell,
1995), leading to 7.5× 106 clusters of 20 neurons, and therefore an average value of [ρ̃−1]aa just
under 8.

These estimates show that in V1 and possibly other cortical areas, we can expect the first order
correction terms in (16), ∆aa = [ρ̃−1]aa/(µC̃V

2

a) to not exceed 0.1, and equivalently for the average
eigenvalue of ∆ to be bounded by 0.1. Furthermore, the above analysis makes it clear when we should
expect homeostasis in general – when cluster firing rates are not too low, responses are highly selective,
and signal correlation structure corresponds to a high-dimensional geometry (Stringer et al., 2019). On
the other hand, when these conditions are violated, the optimal gain configuration can deviate strongly
from the homeostatic solution.

2.7 Generalisations to alternative noise models
Here we move beyond the simple case of unit Fano factor Gaussian noise to other noise models. In
particular, we consider first Poissonian noise, and then correlated and power-law noise.

In Sec. 2.4 we chose the cluster gains g̃ to maximise L̃(g̃). Therefore, to extend our analysis, the
definition of the functional L̃ will need to be generalised. To do so, we recall that in Sec. 2.3, we
demonstrated that (for Gaussian noise) L̃(g̃) arises from applying the Gaussian upper bound to the
information-energy trade off applied to the cluster responses ñ. Therefore, for other noise models, we
take this as the definition of L̃(g̃).

Poisson noise model The toy model of Gaussian noise is unrealistic for two main reasons: spike
counts are discrete, while Gaussian variables are continuous; and spike counts are non-negative, while
Gaussian variables can be negative. A more realistic noise model is given by Poisson spike counts,

nj |s ∼ Poisson (hj(s)) . (20)

Since the sum of independent Poisson random variables is also Poisson, we arrive at the following
distribution for cluster spike counts:

ña|s ∼ Poisson
(
g̃aΩ̃a(s)

)
. (21)

To find L̃, we consider the Gaussian upper bound to the information-energy trade-off applied to the
cluster responses. A slight subtlety arises from the fact that the entropy for a Poisson random variable
is discrete and the Gaussian upper bound is for a continuous random variable. However, we show in
App. A.7 that we have the upper bound

H[ñ] ≤ 1

2
ln

(
(2πe)K det

(
1

12
IK +Cov(ñ)

))
. (22)

We will make an approximation by neglecting the IK/12 term, which under the relevant conditions is
negligible compared the covariance.

We make one additional assumption on the representational curves Ω̃a. Specifically, we assume that
these representational curves have a baseline, and never fall down to zero. To be more precise, we
assume that Ω̃a ≫ 5ω̃a/µ everywhere. We show in App. A.7 that under this condition, the functional
L̃(g̃) becomes identical to that obtained in the Gaussian noise case (see Sec. 2.4, Eq. (8)). Therefore
we have the same optimal gains and approximations to first and zeroth order in ∆.

This analysis reveals why the Gaussian noise model assumed in earlier sections is far less restrictive
than it originally appears. Poisson random variables can be approximated as sums of independent
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Bernoulli random variables. According to the Central Limit Theorem, for large enough rates, these
sums behave like a normal random variable, giving rise to approximately Gaussian noise.

Likewise, the spike count of a cluster of neurons can be considered as the sum of a large collection of
(mostly) independent random variables (i.e. the spike count of individual neurons). Therefore, whatever
the distribution of individual neuronal spike counts, we expect the distribution of a cluster spike count
to be approximately Gaussian, at least in the case of low enough noise correlations and large enough
clusters. This demonstrates that the Gaussian noise case for clusters covers all well-behaved individual
neuron distributions, at least approximately.

Power-law and correlated noise Here we extend our analysis to the case of correlated noise with a
general, power-law scaling of response variance with trial-average response. We now adopt the following
noise model for cluster responses

ñ|s ∼ N
(
h̃(s), σ2 ˆ̃h(s)α Σ(s)

ˆ̃
h(s)α

)
, (23)

where Σ(s) is the stimulus-dependent noise correlation matrix, and 0 < α < 1 is a scaling parameter.
We define β = 2(1− α). Note that σ2 = 1, α = 1

2 yields unit Fano factor noise scaling, and Σ(s) = I
yields uncorrelated noise. In the case α = 1, the noise scales at the same rate as the signal, and the
information term becomes degenerate and independent of neural gains. The energetic term therefore
collapses the firing rate of all neurons down to zero. We consider this case unrealistic, as empirical data
is more consistent with sublinear scaling of noise strength with signal strength even in super-Poisson
conditions (Goris et al., 2014).

We once again will expand to zeroth and first order in a parameter that scales with inverse
signal-to-noise ratio, which we require is small. In this case, we have the condition

∆ := σ2
(
(βµ)β

ˆ̃
CV(α) ρ̃

ˆ̃
CV(α)

)−1

W ≪ 1, (24)

where

Wab =
E
[
Ω̃a(s)

αΣab(s)Ω̃b(s)
α
]

√
E[Ω̃a(s)2α]E[Ω̃b(s)2α]

, (25)

is an effective stimulus-average noise correlation matrix, and C̃Va(α) is the “α-coefficient of variation”
defined by

C̃Va(α) = C̃Va ×
ω̃α
a√

E[Ω̃a(s)2α]
. (26)

Note that W is truly a correlation matrix, in the sense of being positive definite and having a unit
diagonal. Note also, that C̃V(α) and W are independent of neural gains, and can be defined in terms
of full tuning curves, hi(s). Moreover, C̃V(α) > C̃V for α > 1/2 and C̃V(α) < C̃V for α < 1/2. Much
as before, (24) is a requirement that we are in a high signal-to-noise condition. Note that we recover
the previous expression for ∆ when β = 1, σ2 = 1 and W = IK .

Expanding in ∆ as before (see appendix A.8) we arrive at the following zeroth and first order
expressions:

g̃(0)a =
βµ

ω̃a
, (27)

and

g̃(1)a =
βµ

ω̃a

(
1− σ2

(βµ)β

K∑
b=1

[ρ̃−1]abWba

C̃Va(α)C̃Vb(α)

)
. (28)

Note that, since g̃
(0)
a ω̃a = βµ, we once again have homeostasis of firing rates at zeroth-order. This

provides a considerable generalisation of our previous result. In particular, we have demonstrated that
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that constant Fano factor scaling of noise and uncorrelated noise is not necessary to yield homeostasis
as an optimal solution; correlated, power-law scaled noise also suffices, provided conditions similar to
those discussed in Sec. 2.6 hold.

2.8 Gains derived by enforcing cluster level homeostasis

Examining Eq. (27) and Eq. (28), we note that g̃
(1)
a < g̃

(0)
a , since the first order expression is equal to

the zeroth order expression multiplied by a suppressive factor, g̃(1)a = g̃
(0)
a sa, where

sa :=

(
1− σ2

(βµ)β

K∑
b=1

[ρ̃−1]abWba

C̃Va(α)C̃Vb(α)

)
< 1. (29)

There are two basic possibilities for the suppressive factor sa. Either this factor displays significant
and important variation between neurons, or it does not. In the latter case, the suppressive factor
would be reasonably constant (at least when compared with the scale of variation in ω̃a). We therefore
consider a set of gains with a shared suppressive factor shom which is fixed both between clusters and
environments.

g̃homa := g̃(0)a shom. (30)

Note that these gains (like g̃(0)) lead to homeostasis both between clusters and environments. If g̃hom

performs comparably to g̃(1) it would indicate that variation in the suppressive factor is unimportant,
and an exactly homeostatic strategy can lead to near optimal performance.

We define χ := βµshom, so that g̃homa = χ/ω̃a. χ can be interpreted as the (stimulus-averaged) spike
count of each cluster during the coding interval under the gains g̃hom. We can choose χ by maximising
the expected value of L̃ across environments. We show in App. A.9 that this is given by

E[L̃] = µE[log det(IK + χβQ)]−Kχ, (31)

where
Q := σ−2W−1 ˆ̃

CV(α) ρ̃
ˆ̃

CV(α). (32)

Note that L̃ depends only on the spectrum of Q, and not upon its eigenbasis. Thus, if Q has constant
spectrum λn, then our optimised value χ must satisfy

χ = βµshom = βµ

(
1− 1

K

∑
n

1

1 + χβλn

)
. (33)

This expression shows a clear similarity to the suppression factors sa (Eq. (29)). We can make the
connection between the two clearer by noting that the average of the suppressive factors sa across
neurons is given by

1

K

K∑
a=1

sa = 1− 1

(βµ)β
tr(Q−1)

K
. (34)

In the limit as (βµ)βλn ≫ 1, (which corresponds to Eq. (24)), Eq. (33) yields

shom ≈
(
1− 1

(βµ)β
tr(Q−1)

K

)
=

1

K

K∑
a=1

sa. (35)

Thus, in the high SNR limit, the shared suppressive factor in g̃hom is equal to the average suppressive
factor in g̃(1)
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Figure 4: Diagram showing how ω̃a(ϵ) was generated. The end points ω̃a(0) and ω̃a(1) for each cluster
index a is sampled independently from a Beta(6, 1) distribution whose densities are shown on the left
and right. These values are then linearly interpolated (middle plot) to obtain ω̃a(ϵ). The lines in the
middle plot are colour coded from blue to red in terms of the rank order of ω̃a(ϵ). Every 500th line is
coloured black.

2.9 Numerical comparison of approximate gains to optimal gains
Here, we test the performance of g̃(0), g̃(1) and g̃hom using numerical simulations. An environment is
specified by ρ̃, ω̃a, and C̃Va(α) (via the stimulus density P (s)). To capture the notion of adaptation
under environmental shift, we consider a sequence of environments parameterised by ϵ ∈ [0, 1]. We
will take the coefficient of variation to be constant between both clusters and environments, i.e. fix
C̃V

2

a(α) = 10. We also fix µ = 10 and σ2 = 1. Thus the only randomness occurs in our choice of ρ̃, W
and ω̃.

We obtain ω̃a and ρ̃ by interpolating between the endpoints at ϵ = 0 and ϵ = 1. For each
a = 1, . . . ,K, ω̃a(ϵ = 0) and ω̃a(ϵ = 1) are drawn independently from a Beta(6, 1) distribution. The
value of ω̃a(ϵ) was then obtained by linear interpolation. This method for sampling environments is
illustrated in Fig. 4. In line with the results of (Stringer et al., 2019), we obtain ρ̃(ϵ) by normalising a
positive-definite covariance matrix Σ(ϵ) which has a 1/n eigen-spectrum (see Sec. 3.2 for further details)

We numerically compare the performance of the zeroth-order homeostatic code g̃
(0)
a = (βµ)/ω̃a

(Eq. (27)), the first-order correction g̃
(1)
a (Eq. (28)), and the homeostatic gains g̃homa = χ/ω̃a (where χ

maximises Eq. (31)) against gains g̃opta which have been numerically optimised by performing gradient
ascent on the objective L̃(g̃). To compare the performance of each approximate solution, g̃app(ϵ), we
use the relative improvement measure

Capp(ϵ) =
L̃(g̃app(ϵ); ϵ)− L̃(g̃app(0); ϵ)

L̃(g̃opt(ϵ); ϵ)− L̃(g̃app(0); ϵ)
, (36)

which can be interpreted as the improvement in L̃(·; ϵ) (the objective in environment ϵ, and according
to its statistics) achieved by the adaptive gains gapp(ϵ) over the unadapted gains from the original
environment gapp(0), relative to the improvement obtained by the optimally adaptive gains. We took
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K = 10, 000 clusters. We additionally consider the mean relative errors

1

K

K∑
a=1

|gopta (ϵ)− gappa (ϵ)|
gopta (ϵ)

, (37)

as another quantification of our approximations to the optimal gains. To give a sense of the scale of
variation of the optimal gains, we additionally plot the relative error of the optimal gains between the
end points,

1

K

K∑
a=1

|gopta (0)− gopta (1)|
gopta (0)

, (38)

Uncorrelated power-law noise Consider first the case that the noise correlation matrix W is equal
to the identity. We examine this scenario for a range of values for the parameter α (or equivalently
β = 2(1− α)) which controls the scaling of the noise with the signal. If we approximate the spectrum
of ρ̃(ϵ) as fixed at 1/n, then in App. A.9 we show that this implies that χ (approximately) satisfies the
equation

χ

βµ

(
σ2 ln(K)

χβC̃V(α)2

)
= ln

(
1 +

σ2 ln(K)

χβC̃V(α)2

)
. (39)

We can solve this equation numerically to find χ. Note that in our numerical simulations, ρ̃(ϵ) does not
actually possess an exact 1/n spectrum. Therefore, the value found by solving Eq. (39) is sub-optimal
for our simulated correlations. However, this implies that the performance of g̃hom in Fig. 5 represents
a lower-bound on performance.
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Figure 5: (a) Relative errors of gains. The mean (across ϵ) relative error (see Eq. (37)) of different
approximate gains to the optimal gains, with standard deviation error bars, are plotted in purple, as
a function of the noise strength parameter α. In black, we plot the deviation of the optimal gains
between the end points (see Eq. (38)). (b) Relative improvement of g̃hom. We used the measure given
by Eq. (36) to quantify performance of the gains g̃hom. Different colours give the curve of Chom for
different noise strengths, with darker colours indicating stronger noise. (c-d) Same as (b), but for g̃(0)

and g̃(1) respectively.

In Fig. 5a, we plot the average relative errors of the approximate gains as a function of the noise
strength (see Eq. (37)). We see that g̃(1) and g̃hom have low (< 3%) relative errors for all noise strengths,
while the relative error in g̃(0) becomes large for significantly supralinear noise growth (i.e., α = 0.75).
This is predicted by our framework, as when α becomes larger the suppressive factors sa (see Eq. (29))
become smaller, and therefore play a more significant role. This further explains why the relative
improvement C(0) (shown in Fig. 5c) is significantly worse for α = 0.75. The fact that the relative
errors in g̃(1) and g̃hom are comparable, and Chom displays similar performance to C(1) (although
slightly worse) indicates that a shared suppressive factor performs almost as well as local suppressive
factors, even for supralinear noise. Note that for all approximate gains, the performance of the gains
(as quantified by C) decreases with increasing noise strength. This is to be expected, since increasing
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noise increases ∆ and hence the influence of second order terms and higher.
Fig. 6 shows the rates of neuron cluster pre- and post-adaptation for the case of α = 1/2 (Poisson

noise). We use the optimised gains g̃opt. We also show the density of pre-adaptation firing rates. Note
that if we used g̃(0) instead of g̃opt, then the pre-adaptation firing rates are g̃(0)(0)ω̃(1) = µ ω̃(1)

ω̃(0) which
is the ratio of two independent beta random variables. Thus the density on the left will approximately
be that of a (scaled) ratio of independent betas. Fig. 6 also gives us a sense of the scale of variation
between the simulated environments ϵ = 0 and ϵ = 1.

2000 4000 6000 8000
Neuron cluster index

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Av
er

ag
e 

ra
te

 w
ith

in
 c

lu
st

er
 (H

z)

Pre-adaptation rates
Post-adaptation rates

0 1 2 3
Density

Figure 6: Cluster average firing rates pre- and post-adaptation. In red we plot the pre-adaptation firing
rate ∝ g̃opta (1)ω̃a(1) and in blue we plot the post-adaptation rates, ∝ g̃opta (0)ω̃a(1). Clusters are ordered
by their pre-adaptation firing rate. On the left we show the histogram of the pre-adaptation firing rates.

Aligned noise We now fix the noise to have Poisson-like scaling (i.e., α = 1/2), and take the noise
correlation matrix W to have approximately the same eigenbasis as ρ̃, but a different spectrum. In
particular, ρ̃(ϵ) is obtained by normalising a covariance with 1/n spectrum, and W (ϵ) is obtained by
normalising a covariance with the same eigenbasis but a 1/nγ spectrum. See Sec. 3.2 for further details.
If we approximate ρ̃ and W as having exactly aligned bases with exact power-law eigenspectrum decay,
we show in App. A.9 that this implies that χ satisfies the equation:

χ = µ

(
1− 1

K

∑
n

1

1 + χbnγ−1

)
, (40)

where b is a constant. Once again, since the ideal case leading to Eq. (40) differs from our numerical
simulations, the value of χ found using this equation gives a lower bound on the performance of g̃hom.

Discuss Figure 7, and refer to γ = 1 case being so good, and that this corresponds to
the case of Information Limiting Noise, for which there are several lines of evidence in
V1. Yashar can add refs and add to thte discussion.

The case γ = 1 corresponds to perfect alignment between signal and noise correlations, ρ̃−1W = I.
The suppressive factors sa become uniform in this case (see Eq. (29)), and g(1) also displays homeostasis
between clusters and environments. Furthermore, the optimal gains g̃opt likewise display homeostasis
both between clusters and environments. In fact, g̃opt = g̃hom, leading to zero relative error (Fig. 7a)
and perfect relative improvement Chom (Fig. 7b). This case is that of Information Limiting Noise. Our
simulations suggest that a homeostatic strategy is particularly appropriate in this case. For other cases,
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we can see for higher rates of noise fall off (i.e., γ increasing) the homeostatic gains g̃(0) and g̃hom tend
to perform better, while g̃(1) tends to perform worse.
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Figure 7: (a) Relative errors of gains. The mean (across ϵ) relative error (see Eq. (37)) of different
approximate gains to the optimal gains, with standard deviation error bars, are plotted in purple, as a
function of the decay parameter γ. In black, we plot the deviation of the optimal gains between the
end points (see Eq. (38)). (b) Relative improvement of g̃hom. We used the measure given by Eq. (36)
to quantify performance of the gains g̃hom. Different colours give the curve of Chom for different noise
correlation decay, with darker colours indicating a faster eigenvalue decay for noise correlations. (c-d)
Same as (b), but for g̃(0) and g̃(1) respectively.

Constant correlation noise The last setting we consider is that of constant correlation noise. We
once again fix α = 1/2. We now take W = (1 − p)IK + p11T , where p is constant, i.e., the noise
correlation between any two distinct clusters is p. In this case, W−1 = 1

1−p

(
IK − p

1+p(K−1)11
T
)
,

which we approximate as IK/(1− p). Under this approximation, adding constant (positive) correlations
across neurons has the same effect as scaling down the base level of noise σ2 7→ (1 − p)σ2. We can
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obtain the following analytic approximation for χ (see App. A.9):

χ = µ
ln(Kq)

Kq − 1
, q =

σ2(1− p)

µCV2 . (41)

Note that in the limit as q → 0, this reduces to χ = µ. Because of our approximations, the value of χ
found this way once again gives only a lower bound on the performance of g̃hom.
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Figure 8: (a) Relative errors of gains. The mean (across ϵ) relative error (see Eq. (37)) of different
approximate gains to the optimal gains, with standard deviation error bars, are plotted in purple, as a
function of the strength of noise correlation p. In black, we plot the deviation of the optimal gains
between the end points (see Eq. (38)). (b) Relative improvement of g̃hom. We used the measure given
by Eq. (36) to quantify performance of the gains g̃hom. Different colours give the curve of Chom for
different noise correlations p, with darker colours indicating higher levels of noise correlation. (c-d)
Same as (b), but for g̃(0) and g̃(1) respectively.

In Fig. 8a we examine the relative error in the approximate gains as a function of the noise correlation
p. Note that our results display a linear relationship between the relative error and noise strength, with
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g̃(0) and g̃hom decreasing and g̃(1) increasing. In a similar fashion, we see (Fig. 8b-d) that C(0) and
Chom increase as a function of p, while C(1) decreases. At a noise correlation of p ≈ 0.5, the relative
errors display an intersection between g̃(0) and g̃(1), suggesting that for noise correlations stronger than
0.5 the zeroth order approximation outperforms the first order approximation. This is reinforced by
the fact that, for p = 0.6, C(0) lies above C(1). Furthermore, for all noise correlations p ̸= 0, Chom lies
above C(1). Taken together, this indicates that constant positive noise correlations between neurons
strongly favours a homeostatic strategy.

2.10 Synaptic Normalisation allows for propagation of homeostasis between
populations

In this section, we drop corrections to the zeroth order and work only with the homeostatic coding
regime for individual neurons, that is gi = χ/ωi. Given that we have demonstrated the approximate
optimality of homeostatic coding, we now consider how a homeostatic code can be propagated between
populations.

Consider a downstream population with tuning curves Hm(s) for m = 1, . . . ,M . Let Wmi be the
synaptic weight1 from neuron i to neuron m in the downstream population. Working in a linear rate
model, this gives us that the tuning curve of neuron m is

Hm(s) =

N∑
i=1

Wmihi(s). (42)

Suppose that the downstream population has representational curves Γm(s) for m = 1, . . . ,M . We
can write each representational curve as a linear combination of the upstream cluster representational
curves,

Γm(s) =

N∑
j=1

wmjΩj(s). (43)

We now address the question of the relationship between the representational coefficients wmj and the
synaptic weights Wmj . Assuming the downstream population is also implementing homestatic coding,
we obtain (see App. A.6) that

Wmj =
wmjωj∑N
i=1 wmiωi

. (44)

Note that this scheme normalises the total synaptic input mass onto neuron m to be 1. Different
normalisation factors can be achieved by different values of χ for different populations (arising from
e.g., different noise correlation statistics), or different rate coding intervals. Thus, we have demonstrated
that homeostatic coding, applied sequentially to multiple populations, provides an additional normative
interpretation to the learning rule of synaptic normalisation, in which synapses onto a neuron are jointly
scaled to keep total input mass constant. This may be the computational reason for the “synaptic
scaling” observed in certain studies of homeostasis (Turrigiano et al., 1998; Turrigiano, 2008).

2.11 Homeostatic DDCs
Up to this point we have made no assumptions about the nature of cortical representations, beyond
rate-coding and the condition described by Eq. (14). We now apply our framework to a specific theory
of neural representation, namely the distributive distributional code (DDC) (Vertes and Sahani, 2018).
A DDC is based around a Bayesian encoding model, in which the stimulus s is drawn from a conditional
distribution f(s|z). z is called a latent variable, and has prior distribution π(z). The task of the brain

1Synaptic weights here are to be understood as the effect of a pre-synaptic neuron on post-synaptic firing rate, and
not as e.g. the magnitude of post-synaptic mEPSP. Thus, changes in the intrinsic excitability of a post-synaptic neuron
are incorporated into changes in the synaptic weights.
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is to invert this generative model, and calculate the posterior distribution over latent variables given a
stimulus s. This is shown in Fig. 9.

Latent variables z ∼ π Stimulus s ∼ P

Likelihood f(s|z)

Posterior Π(z|s)

Figure 9: In this section, the stimulus s is drawn from a distribution conditioned on the value of a
latent variable z drawn from a prior π. The task of the brain is to compute the posterior Π over latent
variables given the observed stimulus.

In a DDC, each neuron is equipped with a kernel function of the latent variables ϕi = ϕi(z). The
representational curves are then given by the posterior expectation of ϕi given the stimulus s. For
homeostatic gains gi = χ/ωi, this gives tuning curves

hi(s) = χ
E[ϕi(z)|s]
E[ϕi(z)]

. (45)

where we have used the tower property to obtain E[E[ϕi(z)|s]] = E[ϕi(z)]. Thus our tuning curves are
the ratio of a posterior to prior expectation. Here we have assumed that the internal prior possessed by
the brain agrees with the external prior according to which z is drawn. In Sec. 2.13 we will relax this
assumption.

2.12 Bayes-ratio coding via divisive normalisation
A special case of the homeostatic DDC arises in the case where the kernel functions are delta functions,
ϕi(z) = δ(z − zi) where zi is a point in latent variable space corresponding to that neuron. In this
case, the homeostatic DDC becomes

hi(s) = χ
Π(zi|s)
π(zi)

= χ
f(s|zi)
P (s)

. (46)

We call this coding scheme Bayes-ratio coding.
Bayes-ratio coding can be achieved via divisive normalisation with adaptive weights, a canonical

cortical operation (Carandini and Heeger, 2012; Westrick et al., 2016). Given a collection of feed-forward
inputs, Fi(s), weighted divisive normalisation computes the response (and thus the tuning curve) of
neuron i as

hi(s) = χ
Fi(s)

n

σn +
∑

j wjFj(s)n
, (47)

where wj are a collection of normalisation weights, and µ, σ ≥ 0 and n ≥ 1 are constants. Bayes-ratio
coding can be achieved naturally by a divisive normalisation model in which n = 1 and the feed-forward
inputs are given by the generative model’s likelihood function f(s|zi). We then choose the adaptive
normalisation weights wi to encode prior probabilities, wi = π(zi)δzi, where the volume element δzi is
chosen such that the latent variable space is the disjoint union of volumes of size δzi each containing
their corresponding sample point zi. Note that these normalisation weights are adaptive, and vary
between environments as π varies. Then we obtain:∑

j

wjFj(s) ≈
∫

f(s|z)π(z)dz

= P (s),

21



and hence

hi(s) ≈ χ
f(s|zi)

σ + P (s)
. (48)

Taking the limit as σ → 0, we obtain Bayes-ratio coding Eq. (46). Therefore, provided σ is small
compared to P (s), divisive normalisation can be used to approximate Bayes-ratio coding. Not only
does this show that implementing Bayes-ratio coding is biologically plausible, this framework gives a
normative interpretation to both the feedforward inputs (as the generative model likelihoods) and the
normalisation weights (as the prior probabilities).

Additionally, consider a hierarchical generative model z(2) → z(1) → s. Suppose a downstream
population represents the posterior probabilities of z(2) conditional on s by means of Bayes-ratio coding.
Working in the notation and framework of Sec. 2.10, this means taking downstream representational
curves

Γm(s) = Π
(
z(2) = z(2)

m |s
)
. (49)

In App. A.10, we show that the corresponding synaptic weights are

Wmj = g
(
z
(1)
j |z(2)

m

)
δz

(1)
j , (50)

where δz
(1)
j is the size of the volume element to which z

(1)
j belongs, and g is the conditional distribution

of z(1) given z(2).
This result is significant for two reasons. Firstly, the synaptic weights make no reference to the

prior distribution over z(2). There is therefore no need to adapt the weights when the environment
changes. Secondly, the downstream population represents a posterior distribution Π

(
z(2) = z

(2)
m |s

)
,

and therefore acts as part of a recognition model. However, the synaptic weights are proportional to
g
(
z
(1)
j |z(2)

m

)
, and therefore require only knowledge of the generative probabilities. Inductively, we can

see that this scheme can be propagated backwards through many layers, each representing posterior
probabilities of latent variables further up a generative hierarchy.

2.13 Homeostatic DDCs account for stimulus specific adaptation in V1
Homeostatic DDCs can be used to explain certain stimulus-specific adaptation effects. It is typical
of stimulus specific adaptation in V1 (Benucci et al., 2013) that orientation tuning curves display a
repulsion and suppression around the over-represented orientation (adaptor stimulus).

The experiments performed by Benucci et al. 2013 (Benucci et al., 2013) examined the effects of
adaptation on orientation tuned neurons in primary visual cortex of anaesthetised cats. Orientation
tuned cells in V1 have tuning curves which are decreasing functions of the difference between the
orientation of a grating placed in their visual field and a preferred orientation. Anaesthetised cats were
shown a distribution of such gratings that had an increased prevalence (3 to 5 times more likely) of
one particular orientation (arbitrarily defined to be to 0◦). A control group was exposed to a uniform
distribution of gratings. After 2 seconds (or approximately 50 stimulus presentations), the tuning
curves of the cats had adapted. In particular, both suppressive and repulsive effects were seen.

To model the findings of (Benucci et al., 2013) with homeostatic DDCs, we took stimulus and
latent variable spaces to be the orientation space [−90, 90), and a translation invariant likelihood
f(s|z) = f(s− z) proportional to the normal density with standard deviation σf , normalised over the
circle S1. Likewise, we take the kernel functions ϕi(z) = ϕ(z − z(i)) proportional to the normal density
with standard deviation σϕ.

The distribution over stimuli orientations used in the experiment is highly unusual. The internal
prior density possessed by the brain is more likely to be smooth, reflecting an inductive bias. To model
this, we constrained the internal prior to a uniform-Gaussian mixture, with the Gaussian component
having standard deviation σπ. The mixing proportion was chosen to enforce that the density of the
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Gaussian component, plus the density from the uniform component over the adaptor stimulus region,
is equal to the adaptor probability. Our model therefore has only three free parameters, σf , σϕ and σπ.

Figure 10: (a) The density of orientations used in the experiments (Benucci et al., 2013), for an adaptor
probability of 30% and 8 stimulus orientations is shown in red. In blue is the Gaussian-uniform mixture
distribution used in our model. (b) Unadapted tuning curves, normalised to have response of 1 at
the preferred orientation and 0 at orthogonal orientations. The blue curve is obtained from neural
recordings, the red curve is our model fit.

Using the dataset from Benucci et al., we found the tuning curves of the unadapted population by
assuming that neural response is a function only of the difference between the preferred orientation
and stimulus orientation (see Sec. 3.3). We then calculate the changes in preferred orientation of
neurons for each of the experimental conditions. We then fit our model to both the unadapted tuning
curves (Fig. 10b) and the changes in preferred orientation (see Sec. 3.3 for further details). The fit
parameters for our model were σπ = 18◦, σf = 14.2◦, and σϕ = 20◦. Our model is compared to their
experimental data in Fig. 11. Panels (a,d) show the tuning curves for the unadapted (blue) and adapted
(red) populations, averaged across experiments. We can see that our model captures the suppression
and repulsion of tuning curves around the origin. In panels (b,e) we examine the firing rate of the
two populations averaged over the stimulus ensemble. The data and our model both show increased
firing rate of the unadapted population around the adaptor stimulus (set to 0◦). Additionally, we
see homeostasis of firing rates, demonstrated by the uniformity of the red curves. Lastly, our model
recapitulates the repulsion of preferred orientation found experimentally in panels (c,f). Repulsion
here means that the change in preferred orientation has the same sign as the pre-adaptation preferred
orientation. Repulsion is stronger nearer the adaptor, with the largest magnitude of repulsion occurring
30% from the adaptor in both cases.

3 Methods

3.1 Randomly generating high-correlation matrices
In our numerical simulations of firing rates within neuronal clusters, we randomly generated correlation
matrices. Since we are focusing on behaviour within a cluster, such correlation matrices must have
large and positive off-diagonal elements.
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Figure 11: A comparison of the results obtained by Benucci et al. 2013 and our model’s fit. (a) The
tuning curves for the adapted (red) and unadapted (blue) populations, averaged across experimental
conditions. (b) The firing rates of the adapted (red) and unadapted (blue) populations averaged across
exposure to the non-uniform stimulus ensamble. (c) The repulsion of preferred orientations, obtained
from the average tuning curves in panel a. (e-f) The same as (a-c), but for our model.
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Our method is parameterised by α and q. q can be approximately interpreted as the average
off-diagonal element (i.e. the correlation coefficient between different neurons within a cluster), while
α controls the spread (i.e. variance) of correlations coefficients. The matrix ρ within each cluster is
derived by normalising a covariance matrix Σ, given by

Σ = q1k1
T
k + (1− q)U ξ̂UT

U is an orthogonal matrix drawn uniformly (i.e. according to the Haar measure), and ξ is a vector of
independent Γ(α, 1/α) random variables.

3.2 Specification of environments for simulations
To generate ρ̃(ϵ) in our numerical simulations (Sec. 2.9) we first generate a covariance matrix Σ(ϵ), and
let ρ̃(ϵ) be the corresponding correlation matrix. The procedure for generating Σ(ϵ) is as follows.

We randomly and independently sample two K×K random Gaussian matrices R0, R1 ∼ NK×K(0, IK×K)
and obtain symmetric matrices S0 = R0 +RT

0 and S1 = R1 +RT
1 . As is well known, the eigen-basis

(represented by an orthogonal matrix) of such a random Gaussian matrix is distributed uniformly (i.e.,
according to the corresponding Haar measure) over the orthogonal group O(K).

Now for ϵ ∈ (0, 1), set S(ϵ) = (1− ϵ)S0 + ϵS1. Almost surely these matrices have a non-degenerate
spectrum, and hence a unique representation as S(ϵ) = U(ϵ)D(ϵ)U(ϵ)T where D(ϵ) is diagonal with
strictly decreasing eigenvalues and U(ϵ) is orthogonal. Moreover, U(ϵ) depends continuously on ϵ.
Finally, we define Σ(ϵ) = U(ϵ)Λ1U(ϵ)T , where Λ1 = diag(1, 1/2, 1/3, . . . , 1/K).

In the case of simulations for aligned noise, we also generate a noise correlation matrix W (ϵ) which
has an approximately 1/nγ spectrum. Ideally, W and ρ̃ would have the same eigen-basis. However, this
is impossible, since W and ρ̃ are both correlation matrices. Instead, we generate W (ϵ) be normalising
the positive definite matrix U(ϵ)ΛγU(ϵ)T where Λγ = diag(1, 1/2γ , 1/3γ , . . . , 1/Kγ)

3.3 Fitting a homeostatic DDC to Benucci et al. 2013
The data we obtained from the Benucci et al. 2013 paper (Benucci et al., 2013) comprised 11 data sets.
In each data set, the neural population was clustered into 12 groups based on preferred orientation.
These neural populations were then exposed (on different occasions) to a distribution of 6-12 oriented
gratings. This distribution was either uniform or biased, with one particular grating (arbitrarily set to
0◦) having higher prevalence, either 30%, 35%, 40%, or 50%. We discarded all data sets with a 50%
prevalence, since (Benucci et al., 2013) report that homeostasis was not obtained in this case. After
exposure to the distribution of gratings, the responses (i.e., spike count) of each cluster were then
measured to a test set of 20 oriented gratings. These responses were then normalised via an affine
transform so that the after exposure to the uniform stimulus ensemble, the normalised response ranged
from 0 to 1. See their paper (Benucci et al., 2013) for further details.

To obtain the data average tuning curve after exposure to the uniform ensemble (see Fig. 10, (b),
blue) we used a cubic spline to interpolate all the tuning curves of the populations after exposure to
the uniform ensemble in each data set. These were then translated to center the preferred orientation
at 0◦ and averaged. The width of the resultant curve at height e−2 was found, and divided by 4 to
obtain the standard deviation of a Gaussian fit to the unadapted tuning curve (see Fig. 10, (b), red).
In subsequent fitting,

√
σ2
f + σ2

ϕ was constrained to equal this value.
This reduces the number of free parameters to 2, which we choose to be σπ and σf . We fit these

parameters to the change in preferred orientation of each data set. For each data set, cluster (i.e., group
of neurons with a similar preferred orientation) and condition (either exposure to uniform or biased
ensemble) a smoothing kernel was applied before using cubic interpolation to generate tuning curves.
The smoothing kernel was applied to ensure that none of the tuning curves were multimodal. The
argmax of these tuning curves was found to give the preferred orientation. The preferred orientation was
then compared across conditions (uniform ensemble vs biased ensemble) to give a change in preferred
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orientation. These were then averaged across data sets with the same adaptor probability to give
change in preferred orientation curves for each adaptor probability.

We then performed a grid search across values of σπ and σf to compare these to the change in
preferred orientation curves generated by our model. We chose the pair of values which minimised the
sum of the absolute value of the difference between the curves obtained by our model and those in
their data.

4 Discussion

4.1 Adaptation
The argument pursued in this paper is exclusively at the normative level; we make no specific claims
about how (mechanistically) homeostasis may be achieved. We also do not commit ourselves to a
specific time-scale upon which homeostasis is implemented.

The strategy of homeostatic adaptation can be easily implemented by biological neurons, since it
only requires that each neuron keep track of its recent activity and, e.g., adjusts its input weights or
excitability accordingly. Thus, firing rate homeostasis is a biologically plausible and nearly optimal
strategy for navigating the trade-off between coding fidelity and metabolic cost.

Moreover, homeostasis only requires first order statistics regarding firing rates. Other strategies
for maximising information content - which may necessitate the use of more complicated statistics,
such as correlations or entropy - would require the neural population to keep track of more features of
its own responses and wait longer to obtain sufficient samples for reliable estimation of the relevant
statistics. As such, homeostasis may be a primitive but effective initial adaptation mechanism, which
can be implemented quickly and locally.

ωpre

gpre µ

Environment
shift

ωpost

gpost

gpre

Adaptation

µ

Figure 12: Adaptation can achieve homeostasis swiftly following an environmental shift, and thereby
approximately maximise the information-energy trade off.

4.2 Fisher Information and Mutual Information
In our preceding arguments, we have used an upper bound on mutual information based upon
approximating a non-Gaussian random variable as Gaussian. Another commonly used bound for mutual
information is the Fisher Information lower bound (FILB), first derived by Bruner and Nadal (Brunel
and Nadal, 1998). This states that

I(n;S) ≥ IFisher = H[s] +
1

2

∫
ln

(
det(J(s))

(2πe)N

)
P (s)ds (51)

where J is the Fisher Information of the neural response as a function of the stimulus.
For a Poissonian noise model, the Fisher Information is given by

J(s) =

N∑
i=1

∇hj∇Thj

hj
=

N∑
i=1

gj
∇Ωj∇TΩj

Ωj
(52)
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In the framework we have been working in, neuron tuning curves are well approximated by their cluster
tuning curves. This gives

J(s) ≈
K∑

a=1

 ∑
i∈c(a)

gi

 ∇Ω̃a∇T Ω̃a

Ω̃a

=

K∑
a=1

g̃a
∇Ω̃a∇T Ω̃a

Ω̃a

(53)

Therefore, we see that (neglecting corrections to the cluster tuning curves) both the Fisher information
lower bound and the Gaussian upper bound depend on the cluster firing rates.

Moreover, both bounds display the same asymptotic behaviour in the gains, namely that I(ñ; I) ∼
1
2 ln(g̃) as g̃ → ∞. This asymptotic behaviour is crucial to understanding the core of the results
obtained above. We now examine where this behaviour arises from.

We first claim that mutual information scales like 1/2 log of the signal to noise ratio squared of
the neural responses. The Gaussian upper bound approximates neural information flow as a Gaussian
channel. In general, if signal X ∼ N(0,Σs) is perturbed with Gaussian noise Z ∼ N(0,Σn), then the
resultant mutual information is

I(X,X +Z) =
1

2
ln
(
det
(
I +Σ−1

n Σs

))
=

1

2
ln(det(I + SNR2)) (54)

Up to an additive constant, this is the same expression we derive for the information term in L̃. In
the Fisher Information Lower Bound (Eq. (53)) interpreting J as the signal-to-noise ratio gives the
same qualitative behaviour. For Poissonian neurons, with Fisher Information given by Eq. (52), this
interpretation comes from interpreting the numerator ∇h̃a∇T h̃a as a squared signal term (quantifying
the sensitivity of cluster a to changes in stimuli) and the denominator h̃a as a squared noise term (a
baseline level of spike firing which obscures changes in firing rate).

Next, we claim that the signal scales linearly with the gain, and the noise scales sublinearly,
specifically as

√
g̃. Putting these together, we obtain SNR2 ∼ g̃. In the Gaussian channel case, the

squared signal is the firing rate covariance Cov(E[n|s]) and the squared noise is the mean spike count
variance E[Cov(n|s)]. The squared signal term scales quadratically with the firing rate, and therefore
the gain. For constant Fano factor neurons, the squared noise term scales linearly with the mean, and
therefore linearly with the gain, giving the required result. Taking the inverse of the squared noise
gives us the expression

1

2
ln
(
det
(
IK + P̃ ˆ̃ω ˆ̃g

))
(55)

which should be compared to the Gaussian Channel result Eq. (54) above. For the Fisher Information
expression (Eq. (53)), the squared “signal” term ∇h̃a∇T h̃a = g̃2a∇Ω̃a∇T Ω̃a scales quadratically, and
the squared noise h̃a = g̃aΩ̃a scales linearly.

We have therefore shown that for both the upper and lower bounds, the mutual information behaves
approximately as 1/2 log of the gains. This requires that we are in a high signal-to-noise regime. For
the Fisher Information, this requires a large number of neurons and a long coding interval, with the
signal vectors ∇Ω̃a not too cluster together in stimulus space. Our condition on the matrix ∆ is an
analogous high signal-to-noise condition.

Since metabolic cost scales linearly with the gains, our target function L̃ has the asymptotic
behaviour

L̃ ∼ µ ln(g̃)− g̃ω̃ (56)

This function is maximised when g̃ = µ/ω̃, which yields homeostasis.
Although the arguments that we have pursued in earlier sections revolve around use of one particular

upper bound, this gives us reason to believe that our results are robust to modelling assumptions. We
have demonstrated in this section that the mutual information is upper and lower bounded by terms
that scale as 1/2 log gain, and therefore must also display the same scaling. Moreover, we have shown
that this scaling, combined with a linear metabolic cost term, yields homeostasis as an optimal solution.
There is therefore reason to believe that other approximations to mutual information will give similar
results, provided we are in a high signal-to-noise ratio regime.
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4.3 Comparison with Ganguli and Simoncelli 2014
The previous work in efficient coding theory which our framework most naturally builds off is that of
Ganguli and Simoncelli (Ganguli and Simoncelli, 2014). They consider a collection of tuning curves
hj acting on a one-dimensional stimulus s ∈ [smin, smax]. These curves arise as a warped and scaled
convolution population; specifically, the tuning curve of neuron j is given by

hj(s) = g(D−1(j))h(D(s)− j) (57)

where h is a unimodal tuning curve with peak at 0, g is a gain function, and D(s) is an increasing
function satisfying D(smin) = 0, D(smax) = N . The problem then becomes optimising the Fisher
Information lower bound (51) in the parameters g and D, subject to a constraint on the total activity
of the network which enforces population level homeostasis.

Under various smoothness assumptions, Ganguli and Simoncelli showed that the optimal solution to
this problem is D(s) =

∫ s

smin
P (s)ds and g(s) is constant. The firing rate of neuron j is then given by∫

hj(s)P (s)ds =

∫
gh(D(s)− j)D′(s)ds

= g

∫
h(x− j)dx

which (assuming circular boundary conditions) is independent of neuron identity j. This therefore
gives identical firing rates and, provided adaptation attunes D to changes in P , homeostasis across
environments.

Our results are naturally considered as an extension and generalisation of the results obtained by
Ganguli and Simoncelli. Their framework places tight constraints on the form that neural representa-
tional curves possess, through the parameters g and D. In contrast, we make very few assumptions about
the representational curves Ω, other than clustering and a high signal-to-noise ratio. Our framework can
therefore be applied to a much larger variety of tuning curves which are i.e. multimodal, inhomogenous
between neurons, and acting on a high-dimensional stimulus space. Ganguli and Simoncelli also only
consider the case of Poissonian (uncorrelated, unit Fano factor) noise; in section 2.7 we show that
our framework can also handle correlated and power-law noise. Additionally, we have computed the
first-order correction to homeostasis that arises from the sharing of representations between neurons.

Moreover, since the density of preferred orientations D′ is proportional to stimulus density, this
framework predicts that adaptation should cluster tuning curves together around an adaptor stimulus.
As we demonstrated in Sec. 2.13, our more general explanation of homeostatic coding coupled with
Bayesian theories of representation can account for stimulus specific adaptation effects involving the
repulsion of preferred orientation from an adaptor.

4.4 Other models of V1 Stimulus Specific Adaptation
Westrick et al. 2016 (Westrick et al., 2016) also give a model of the results of the Benucci et al. 2013
experiment (Benucci et al., 2013). Their model uses divisive normalisation (Carandini and Heeger,
2012) with adaptive weights to achieve homeostasis and stimulus specific repulsion. As discussed above
in Sec. 2.12, Bayes-ratio coding (a special case of homeostatic DDCs) can be accomplished by such a
divisive normalisation scheme. Our framework and modelling work therefore builds off their earlier
results, giving a normative interpretation to their descriptive model.

Snow, Coen-Calli, and Schwartz 2016 (Snow et al., 2016) give two alternative models of stimulus
specific adaptation in V1. In their models, divisive normalisation also plays a key role, but is given
a different normative interpretation. They consider generative models of visual scenes in the class of
mixtures of Gaussian scale mixture models (MGSM). In each of these, the response of a collection of
linear filters applied to an image patch are assumed to be independently Gaussian, multiplied by a
scaling variable across space and time. The task of V1 is then to infer which filters share a common
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scaling variable, and then “factor out” this scaling variable via divisive normalisation to compute the
latent Gaussian variables.

Their models are primarily designed to capture adaptation effects over a very short time-scale
(i.e. the last 9 frames of a video). Although they are able to capture effects such classical receptive
field orientation adaptation effects well, their model not designed to account for longer time-scale
homeostatic adaptation. Accordingly, their models did not successfully reproduce the results of Benucci
et al. 2013. In particular, each of the two models could only account for either stimulus specific
adaptation or neuron specific adaptation, but not both simultaneously. This opens up the possibility
that Bayesian homeostatic coding coupled with a more sophisticated generative model could account
for both short time-scale CRF effects and longer time-scale homeostatic effects. We believe that this
would be a fruitful direction for future research.

4.5 Limitations
In order to obtain the analytic results throughout the paper, we have been forced to make a number of
assumptions and simplifications. These necessarily limit our results. However, our hope is that the
underlying logic of our argument (outlined in section 4.2) holds up despite our simplifications.

Firstly, instead of a direct maximisation of mutual information, we maximise a proxy - in this
case an upper bound obtained by replacing the marginal entropy with the entropy of a corresponding
Gaussian (see section 2.2). The practice of maximising bounds on mutual information for analytic
tractability is standard within efficient coding theory (Ganguli and Simoncelli, 2014; Brunel and Nadal,
1998). In order for this substitution to not significantly affect our underlying argument, we require that
the mutual information and our upper bound display the same behaviour in the relevant portion of
our parameter regime. Note that this is different from the bound being tight. Given the argument in
section 4.2, there is a good reason to believe that this is so.

Secondly, our analysis requires a semi-artificial imposition of a cluster structure onto the neural
population (section 2.3). This involved grouping neurons by similar response properties. Our argument
then proceeded by utilising the fact that within a cluster, signal correlations are very high and that
between different clusters, signal correlations are generally quite low. In reality there is not such a
sharp distinction between neurons with low correlations and neurons with high correlations. As this
distinction weakens, the validity neglecting terms of order O(ϵ2) in the expansion L = L̃+ ϵLϵ +O(ϵ2)
begins to break down.

Lastly, instead of treating the full problem at once, we broke the problem down into two successive
stages: first solving the between cluster problem by maximising L̃ in the cluster gains g̃ and then fixing
these and maximising Lϵ in the individual neuron gains. The fundamental idea here is that there are
directions in which the target functional L vary relatively slowly and directions in which variation
is relatively fast. Instead of maximising the function over the entire space, we first move along the
dimensions of fast variation, finding the maximum. We then move along the directions of slow variation,
finding the maximum along these dimensions. Provided the extent of variation is sufficiently different,
our hope is that such a procedure will not land us too far away from the global optimum.

4.6 Directions of future research
The results obtained here for the cluster gains correspond to the high signal-to-noise ratio limit. We do
not give analytic results for the gains in the low signal-to-noise limit. This is for two reasons: firstly,
there is good reason to believe that the nervous system is operating in a high signal-to-noise regime,
since otherwise robustness of function would be difficult to explain; secondly, our analytically tractable
approximation to the mutual information is only valid in this regime, and it is not clear what insight
could be gained using it when signal-to-noise is low. Indeed, the Fisher Information lower bound for
mutual information (see section 4.2) is also only valid for high signal-to-noise: when signal-to-noise
is low, the bound can be violated (Yarrow et al., 2012; Bethge et al., 2002). There is thus presently
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no way to predict analytically features of neural coding when signal-to-noise is low using the Infomax
principle. This presents an important opportunity for future work.

Our analysis here only considers a limited class of noise models. However, the key ideas used in our
framework could potentially be applied to a wider class of noise models, such as exponential families
(Beck et al., 2007).

Up to section 2.11, we make no assumptions about what the nervous system is attempting to
represent via the curves Ωj(s). We then apply our framework to a popular theory of Bayesian encoding
(namely DDCs), and develop the new idea of Bayes-ratio coding. There is therefore an opportunity to
apply our framework to other theories of representation, for example Probabilistic Population Codes
(PPCs) (Beck et al., 2007).

4.7 Conclusion
We developed a theory of optimal gain modulation for combating noise in neural representations. We
demonstrated that, when mean neural firing rates are not too small, selectivities are sufficiently sparse,
and responses form a high-dimensional geometry, the trade-off between coding fidelity and metabolic
cost is optimised by gains that react to shifts in environmental stimulus statistics to yield firing rate
homeostasis within neural clusters. We further demonstrated that our framework could account for the
optimality of a diversity of firing rates within neural clusters. By examining parameter values obtained
from experiments, we confirmed that the conditions necessary for our analytic approximation to be
valid did indeed hold. We further validated our approximation by demonstrating numerically that it
performs well compared to the optimal gains. We then demonstrated that our results could be extended
to both Poissonian noise and correlated, power-law noise, showing the full breadth of our framework.
Having developed a normative theory of neural homeostasis, we show how homeostasis can lead to
stimulus specific adaptation when coupled with Bayesian theories of representation. In particular, we
focused on Bayesian DDCs, and their low-width kernel limit, the Bayes-ratio code.
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A Appendix

A.1 Analytic expression for L
The functional L0(g) = 2µI(n; s)−

∑N
j=1 E[nj ] can be upper bounded by L using

H[n] ≤ H[N (h(s),Cov(n))] =
1

2
ln
(
(2πe)N det (Cov(n))

)
giving

L0(g) ≤ L(g) = 2µ

(
1

2
ln
(
(2πe)N det(Cov(n))

)
−H[n|s]

)
−

N∑
j=1

E[hj(s)]

In this section of the appendix we demonstrate that, up to an additive constant,

L(g) = µ ln
(
det
(
IN + ĈVρĈVω̂ĝ

))
−

N∑
j=1

gjωj
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Firstly, we demonstrate that E[nj ] = gjωj .

E[nj ] = E[E[nj |s]]
= E[hj(s)]

= E[gjΩj(s)]

= gjE[Ωj(s)]

= gjωj

Next, we derive an expression for H[n|s]. Recall that ni|s ∼ N(hi(s), hi(s)) independently. In this
case,

H[n|s] =
N∑
j=1

H[nj |s]

H[nj |s] =
∫

H[N(hj(s), hj(s))]P (s)ds

=

∫
1

2
ln(2πehj(s))P (s)ds

=
1

2
ln(2πe) +

1

2
ln(gj) +

1

2
E[ln(Ωj(s))]

H[n|s] = N

2
ln(2πe) +

1

2

N∑
j=1

ln(gi) +

N∑
j=1

1

2
E [ln(Ωj(s))]

Lastly, we find an expression for Cov(n). We use the decomposition Cov(n) = E[Cov(n|s)] +
Cov(E[n|s]).

Cov(n|s) = Var(n̂|s)

= ĥ(s)

E[Cov(n|s)] = E[ĥ(s)]
= ĝω̂

Cov(E[n|s]) = Cov(h(s))

= ĝCov(Ω(s))ĝ

Cov(Ω(s))ij =

=
√

Var(Ωi(s))
Cov(Ωi(s),Ωj(s))√

Var(Ωi(s) Var(Ωj(s)))

√
Var(Ωj(s))

= ωi

√
Var(Ωi(s))

ωi
ρij

√
Var(Ωj(s))

ωj
ωj

= ωiCViρijCVjωj

Cov(E[n|s]) = ĝω̂ĈVρĈVω̂ĝ
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Substituting these into the covariance, we obtain

Cov(n) = E[Cov(n|s)] + Cov(E[n|s])

= ĝω̂ + ĝω̂ĈVρĈVω̂ĝ

= ĝω̂
(
IN + ĈVρĈVω̂ĝ

)
ln (det (Cov(n))) =

N∑
j=1

ln(gj) +

N∑
j=1

ln(ωj) + ln
(
det
(
IN + ĈVρĈVω̂ĝ

))

Putting all these parts together gives us

ln
(
(2πe)N det(Cov(n))

)
− 2H[n|s] = N ln(2πe) + ln(det(Cov(n)))

−N ln(2πe)−
N∑
j=1

ln(gi)−
N∑
j=1

E [ln(Ωj(s))]

= ln(det(Cov(n)))−
N∑
j=1

ln(gj)−
N∑
j=1

E [ln(Ωj(s))]

= ln
(
det
(
IN + ĈVρĈVω̂ĝ

))
−

N∑
j=1

E
[
ln

(
Ωj(s)

ωj

)]

Plugging this in, we obtain

L(g) = µ ln
(
det
(
IN + ĈVρĈVω̂ĝ

))
−

N∑
j=1

gjωj − µ

N∑
j=1

E
[
ln

(
Ωj(s)

ωj

)]

A.2 Expanding L̃ in ϵ

We now take ρ = ρ̃⊗ 1k1
T
k − ϵT . Analogously to Eq. (9), we define

P̃ =
ˆ̃

CV ρ̃
ˆ̃

CV ˆ̃ω (58)
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Substituting ρ into Eq. (8), L becomes (up to an additive constant)

L(g) = µ ln det
(
IN + ĈV[ρ̃⊗ 1k1

T
k − ϵT ]ĈVω̂ĝ)

)
−

N∑
j=1

gjωj

= µ ln det
(
IN + ĈV[ρ̃⊗ 1k1

T
k ]ĈVω̂ĝ − ϵĈVT ĈVω̂ĝ)

)
−

N∑
j=1

gjωj

= µ ln det
(
IN + [P̃ ⊗ 1k1

T
k ]ĝ − ϵĈVT ĈVω̂ĝ)

)
−

N∑
j=1

gjωj

= µ ln
(
det
(
IN + P̃ ⊗ 1k1

T
k ĝ
))

−
N∑
j=1

gjωj

− ϵTr

((
IN + P̃ ⊗ 1k1

T
k ĝ
)−1

ĈV T ĈVω̂ĝ)

)
+O(ϵ2)

We call the zeroth and first order term L̃ and Lϵ respectively, thereby obtaining

L = L̃+ ϵLϵ +O(ϵ2)

We now show that the zeroth order term depends only on the cluster rates g̃a =
∑

i∈c(a) gi. We start
by showing that

ln
(
det
(
IN + P̃ ⊗ 1k1

T
k ĝ
))

can be re-written as
ln
(
det
(
IK + P̃ ˆ̃g

))
Consider the following basis for RN . For each cluster a = 1, . . . ,K define va given by

va = ea ⊗ 1k

where ea is the ath standard basis element on RK . Then

P̃ ⊗ 1k1
T
k ĝv

a = (P̃ ˆ̃gea)⊗ 1k =

K∑
b=1

[
P̃ ˆ̃g
]
ba

vb

We then extend this to a basis of RN as follows. For each cluster a, we add an additional k − 1 vectors
which have support only within cluster a. Specifically, for each index i ̸= (a − 1)k + 1, we add the
vector which is equal to (−1/g(a−1)k+1, 0, . . . , 0, 1/gi, 0, . . . , 0) on cluster a and zero elsewhere. Note
that all such vectors are in the kernel of P̃ ⊗ 1k1

T
k ĝ. In this basis of RN , P̃ ⊗ 1k1

T
k ĝ is represented by

the block matrix (
P̃ ˆ̃g 0
0 0

)
Accordingly,

ln(det(IN + P̃ ⊗ 1k1
T
k ĝ))) = ln

(
det

(
IK + P̃ ˆ̃g 0

0 IN−K

))
= ln

(
det(IK + P̃ ˆ̃g) det(IN−K)

)
= ln

(
det(IK + P̃ ˆ̃g)

)
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Next, note that

N∑
i=1

giωi ≈
K∑

a=1

∑
i∈c(a)

giω̃a

=

K∑
a=1

g̃aω̃a

This therefore allows us to write that

L̃ = ln
(
det(IK + P̃ ˆ̃g)

)
−

K∑
a=1

g̃aω̃a

as claimed in Sec. 2.3.

A.3 First-order maximisation of L̃
We now consider optimising

L̃(g̃) = µ ln
(
det
(
IK + P̃ ˆ̃g

))
−

K∑
a=1

g̃aω̃a

Taking the derivative with respect to g̃a, and setting to zero, we obtain the condition

µ
[
(IK + P̃ ˆ̃g)−1P̃

]
aa

= ω̃a

This can be re-written as
µ

g̃a
(IK + ˆ̃g

−1
P̃−1)−1

aa = ω̃a

We then note that

P̃ =
ˆ̃

CVρ̃
ˆ̃

CV ˆ̃ω

P̃−1 = ˆ̃ω
−1 ˆ̃

CV
−1

ρ̃−1 ˆ̃
CV

−1

= µ ˆ̃ω
−1

∆

ω̃a =
µ

g̃a

(
IK + µˆ̃g

−1 ˆ̃ω
−1

∆
)−1

aa

Since ∆ is small, we can use a first-order Neumann expansion for
(
IK + µˆ̃g

−1 ˆ̃ω
−1

∆
)−1

. This expansion
gives: (

IK + µˆ̃g
−1 ˆ̃ω

−1
∆
)−1

≈ IK − µˆ̃g
−1 ˆ̃ω

−1
∆

Plugging this in, we obtain

ω̃a ≈ µ

g̃a

(
1− µ

g̃aω̃a
∆aa

)
(59)

which can be rearranged to the quadratic equation(
g̃aω̃a

µ

)2

=

(
g̃aω̃a

µ

)
−∆aa (60)
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To zeroth-order in ∆, this has solution
g̃aω̃a

µ
= 1

and to first-order, the solution is
g̃aω̃a

µ
= 1−∆aa

A.4 Manipulating Lϵ

Recall that
L(g) = L̃(g̃) + ϵLϵ(g) +O(ϵ2)

In this section, we derive a simplified form of Lϵ. We begin with the expression given in App. A.2. This
is

Lϵ(g) = −tr

((
IN + P̃ ⊗ 1k1

T
k ĝ
)−1

ĈVT ĈVω̂ĝ

)
We will write P̃ ⊗ 1k1

T
k = (IK ⊗ 1k)(P̃ ⊗ 1T

k ) and apply the Woodbury matrix identity to obtain that(
IN + P̃ ⊗ 1k1

T
k ĝ
)−1

= IN − (IK ⊗ 1k)
(
IK + (P̃ ⊗ 1T

k )ĝ(IK ⊗ 1k)
)−1

(P̃ ⊗ 1T
k )ĝ

(P̃ ⊗ 1T
k )ĝ(IK ⊗ 1k) = P̃ ˆ̃g(

IN + P̃ ⊗ 1k1
T
k ĝ
)−1

= IN −
((

IK + P̃ ˆ̃g
)−1

P̃

)
⊗ 1k1

T
k ĝ

Substituting in and using linearity of the trace, we obtain

Lϵ = −tr
(
ĈVT ĈVω̂ĝ

)
+ tr

(((
IK + P̃ ˆ̃g

)−1

P̃

)
⊗ 1k1

T
k ĝĈVT ĈVω̂ĝ

)

The first term is equal to

−
N∑
i=1

CV2
i giωiTii

But recall that ρ = ρ̃⊗ 1k1
T
k − ϵT . Since ρ̃ and ρ are both correlation matrices, their diagonal elements

are both equal to 1, and therefore the diagonal elements of T are all zero. So the first term vanishes.
This leaves us with the expression

Lϵ = tr

(((
IK + P̃ ˆ̃g

)−1

P̃

)
⊗ 1k1

T
k ĝĈVT ĈVω̂ĝ

)
Note that this is exact, and does not require taking any truncations. We now simplify this functional
by truncating to zeroth-order in an expansion in

∆ =
(
µ

ˆ̃
CVρ̃

ˆ̃
CV

)−1
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In A.3, we demonstrate that to zeroth-order, g̃a = µ/ω̃a, and therefore P̃ ˆ̃g = ∆−1. Therefore(
IK + P̃ ˆ̃g

)−1

P̃ =
(
I +∆−1

)−1
P̃

= (∆+ IK)−1∆P̃

= (∆+ IK)−1µω̂−1

≈ µω̂−1

where we have taken a zeroth-order expansion in ∆. We substitute this into our functional. We will
use a(i) to denote the index of the cluster to which neuron i belongs.

Lϵ = tr
(
µω̂−1 ⊗ 1k1

T
k ĝĈVT ĈVω̂ĝ

)
=

N∑
i=1

µ

ω̃a(i)

∑
j:a(j)=a(i)

gjCVjTjiCViωigi

=

N∑
i=1

µ

ω̃a(i)

∑
j:a(j)=a(i)

gjC̃Va(j)TjiC̃Va(i)ω̃a(i)gi

=

N∑
i=1

µC̃V
2

a(i)

∑
j:a(j)=a(i)

gjTjigi

Note that this has decoupled the problem between clusters. In particular, the problem now can be
written as a collection the following K problems:

{gi}i∈c(a) ∈ argmax

 ∑
i,j∈c(a)

giTijgj

 s.t.
∑

i∈c(a)

gi = g̃a, gi ≥ 0

However, recall that for i, j ∈ c(a), Tij = (ρ̃aa − ρij)/ϵ. Substituting this in gives the problems

{gi}i∈c(a) ∈ argmax

ρ̃aa
∑

i,j∈c(a)

gigj −
∑

i,j∈c(a)

giρijgj

 s.t.
∑

i∈c(a)

gi = g̃a, gi ≥ 0

We can use that
∑

i∈c(a) gi = g̃a to rewrite this as

{gi}i∈c(a) ∈ argmin

 ∑
i,j∈c(a)

giρijgj

 s.t.
∑

i∈c(a)

gi = g̃a, gi ≥ 0

A.5 Estimates for tr(ρ̃−1)

In this appendix, we give estimates for [ρ̃−1]aa through the average value tr
(
ρ̃−1

)
/K. Stringer et al.

(Stringer et al., 2019) found that in response to a ecological visual stimuli, signal correlations of neural
responses display a 1/n power-law decay. The eigenvalues of ρ̃ are therefore λn = A1/n where A1

36



normalises the trace to be K. In particular,

A1 =
K∑K
n=1

1
n

K

A1
=

K∑
n=1

1

n

≈
∫ K

1

1

x
dx

= ln(K)

A1 =
K

ln(K)

We then calculate

tr
(
ρ̃−1

)
=

K∑
n=1

1

λn

=
1

A1

K∑
n=1

n

=
1

A1

K(K + 1)

2

tr
(
ρ̃−1

)
K

=
1

A1

(K + 1)

2

≈ ln(K)

2

A.6 Homeostatic propagation
In this appendix, we derive how the weights between neural populations must change in order for
homeostasis to be propagated between the. We work in a linear rate model.

We start by considering a downstream population of tuning curves Hm(s) for m = 1, . . . ,M , with
Wmi the synaptic weight from neuron i to neuron m in the downstream population. The tuning curve
of neuron m is

Hm(s) =
N∑
i=1

Wmihi(s) (61)

We assume the downstream population has representational curves Γm(s) for m = 1, . . . ,M given
by

Γm(s) =

N∑
j=1

wmjΩj(s) (62)

If the downstream population is also implementing homestatic coding, we know that

Hm(s) =
χΓm(s)

γm
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where γm = E[Γm(s)]. But then

γm = E[Γm(s)]

=

N∑
j=1

wmjE[Ωj(s)]

=

N∑
j=1

wmjωj

χΓm(s) =

N∑
j=1

wmjχΩj(s)

=

N∑
j=1

wmjωjhj(s)

Substituting this in, we get

Hm(s) =

∑N
j=1 wmjωjhj(s)∑N

i=1 wmiωi

(63)

Comparing coefficients, we can see that

Wmj =
wmjωj∑N
i=1 wmiωi

As claimed.

A.7 Upper bound for Poissonian noise
In this section, we consider the following model for cluster spike counts.

ña|s ∼ Poisson
(
g̃aΩ̃a

)
(64)

Here we derive a Gaussian upper bound to the mutual information, and show that an approximation to
it leads to the same objective L̃ derived in the uncorrelated, unit Fano-factor Gaussian noise case. We
start with the objective

L̃0(g̃) = 2µI(ñ; s)−
K∑

a=1

g̃aω̃a (65)

We decompose I(ñ; s) = H[ñ]−H[ñ|s]. We will once again upper bound the marginal entropy H[ñ].
A difficulty arises from the fact that a Poisson random variable is discrete and the Gaussian upper
bound we previously used is for a continuous random variables. We address this problem as follows:
Consider a random variable U which is uniformly distributed on [0, 1)K , independent of ñ. Then ñ+U
is a continuous random variable. We apply the Gaussian bound to this. Let p be the p.d.f. of ñ+U ,
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P the p.m.f. of ñ, and u the p.d.f. of U .

H[ñ+U ] ≤ K

2
ln(2πe) +

1

2
ln (det (Cov(ñ+U)))

Cov(ñ+U) = Cov(ñ) + Cov(U)

Cov(U) =
1

12
IK

H[ñ+U ] = −
∫
RK

p(x) ln(p(x))dx

S(y) = {x ∈ RK |yi ≤ xi < yi + 1}

H[ñ+U ] = −
∑

y∈NK

∫
S(y)

p(x) ln(p(x))dx

= −
∑

y∈NK

∫
S(y)

P(y)u(x− y) ln(P(y)u(x− y))dx

= −
∑

y∈NK

∫
S(y)

P(y) ln(P(y))dx

= H[ñ]

Putting this together gives us the upper bound

H[ñ] ≤ 1

2
ln

(
(2πe)K det

(
1

12
IK +Cov(ñ)

))
(66)

We now address the problem of the marginal entropy H[ñ|s]. By conditional independence, we have
that

H[ñ|s] =
K∑

a=1

∫
H[Poisson(g̃aΩ̃a(s))]P (s)ds (67)

We now make use of the assumption discussed in Sec. 2.7 that the representational curves Ω̃a have a
baseline, and in particular Ω̃a ≫ 5ω̃a/µ everywhere. Under this condition we can use the fact that for
fixed s,

H[Poisson(g̃aΩ̃a(s))] ≈ H[N (g̃aΩ̃a(s), g̃aΩ̃a(s))] (68)

This means we can obtain the approximate upper bound:

L̃0(g̃) ≤ 2µ

(
1

2
ln

(
(2πe)K det

(
1

12
IK +Cov(ñ)

))
−H[ñ|s]

)
−

K∑
a=1

g̃aω̃a

≈ 2µ

(
1

2
ln
(
(2πe)K det (Cov(ñ))

)
−

K∑
a=1

H[N (g̃aΩ̃a(s), g̃aΩ̃a(s))]

)
−

K∑
a=1

g̃aω̃a

= L̃(g̃) + const.

where L̃(g̃) is the same functional that we defined earlier for Gaussian random variables, Eq. (12).

A.8 Power-law and correlated noise
In this appendix, we consider the case of power-law, correlated noise for the clusters. We will take
cluster spike counts to be given by

ñ|s ∼ N
(
h̃(s), σ2 ˆ̃h(s)αΣ(s)

ˆ̃
h(s)α

)
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where Σ(s) is the stimulus-dependent noise correlation matrix, and 0 < α < 2 is a scaling parameter.
The gains will once again be taken to maximise

L̃(g̃) = µ
(
ln
(
(2πe)K det (Cov(ñ))

)
− 2H[ñ|s]

)
−

K∑
a=1

g̃aω̃a

Much as in appendix A.1, we will simplify this expression. To keep our derivation clean, we will use
the expression r̃a = g̃aω̃a.

We start by deriving an expression for 2H[n|s].

2H[n|s] =
∫

2H
[
N
(
h̃(s), σ2 ˆ̃h(s)αΣ(s)

ˆ̃
h(s)α

)]
P (s)ds

=

∫
ln
(
(2πe)K det

(
σ2 ˆ̃h(s)αΣ(s)

ˆ̃
h(s)α

))
P (s)ds

= ln
(
det
(
ˆ̃r
2α
))

+K ln(2πeσ2)

+

∫
ln
(
det
(
ˆ̃ω
−α ˆ̃

Ω(s)αΣ(s)
ˆ̃
Ω(s)α ˆ̃ω

−α
))

P (s)ds

= ln
(
det
(
ˆ̃r
2α
))

+ const.

= 2α

K∑
a=1

ln(r̃a) + const.

Next, we find an expression for Cov(ñ). We use the decomposition Cov(ñ) = E[Cov(ñ|s)]+Cov(E[ñ|s]).

Cov(ñ|s) = σ2 ˆ̃h(s)αΣ(s)
ˆ̃
h(s)α

= σ2

√
E[ ˆ̃h(s)2α]×

ˆ̃
h(s)α√
E[ ˆ̃h(s)2α]

Σ(s)
ˆ̃
h(s)α√
E[ ˆ̃h(s)2α]

×
√
E[ ˆ̃h(s)2α]

E[Cov(ñ|s)] = σ2

√
E[ ˆ̃h(s)2α]W

√
E[ ˆ̃h(s)2α]

Where we have defined

W := E

 ˆ̃
h(s)α√
E[ ˆ̃h(s)2α]

Σ(s)
ˆ̃
h(s)α√
E[ ˆ̃h(s)2α]

 = E

 ˆ̃
Ω(s)α√
E[ ˆ̃Ω(s)2α]

Σ(s)
ˆ̃
Ω(s)α√
E[ ˆ̃Ω(s)2α]


which is the stimulus-averaged noise correlation matrix. Next, we find an expression for Cov(E[ñ|s])

E[ñ|s] = h̃(s)

Cov(E[ñ|s]) = Cov
(
h̃(s)

)
= ˆ̃r

ˆ̃
CVρ̃

ˆ̃
CVˆ̃r

Cov(ñ) = E[Cov(n|s)] + Cov(E[n|s])

= σ2

√
E[ ˆ̃h(s)2α]W

√
E[ ˆ̃h(s)2α] + ˆ̃r

ˆ̃
CVρ̃

ˆ̃
CVˆ̃r

= σ2 ˆ̃r
α

√
E[ ˆ̃Ω(s)2α]

ˆ̃ω
α W

√
E[ ˆ̃Ω(s)2α]

ˆ̃ω
α

ˆ̃r
α
+ ˆ̃r

ˆ̃
CVρ̃

ˆ̃
CVˆ̃r
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We now make use of the α-coefficient of variation,

C̃Va(α) := C̃Va ×
ω̃α
a√

E[Ω̃a(s)2α]
.

Substituting this in, we obtain

Cov(ñ) = σ2 ˆ̃r
α

√
E[ ˆ̃Ω(s)2α]

ˆ̃ω
α W

√
E[ ˆ̃Ω(s)2α]

ˆ̃ω
α

ˆ̃r
α
+ ˆ̃r

ˆ̃
CVρ̃

ˆ̃
CVˆ̃r

= ˆ̃r

√
E[ ˆ̃Ω(s)2α]

ˆ̃ω
α [σ2 ˆ̃r

α−1
W ˆ̃r

α−1
+

ˆ̃
CV(α)ρ̃

ˆ̃
CV(α)]

√
E[ ˆ̃Ω(s)2α]

ˆ̃ω
α

ˆ̃r

Therefore, up to an additive constant, we obtain the expression

ln (det (Cov(ñ))) = 2

K∑
a=1

ln(r̃a) + ln
(
det
(
σ2 ˆ̃r

α−1
W ˆ̃r

α−1
+

ˆ̃
CV(α)ρ̃

ˆ̃
CV(α)

))
= 2

K∑
a=1

ln(r̃a) + ln(det(
ˆ̃

CV(α)ρ̃
ˆ̃

CV(α)))

+ ln
(
det
(
σ2 ˆ̃

CV(α)−1ρ̃−1 ˆ̃
CV(α)−1 ˆ̃r

α−1
W ˆ̃r

α−1
+ IK

))
= 2

K∑
a=1

ln(r̃a) + ln
(
det
(
IK +MW−1 ˆ̃r

α−1
W ˆ̃r

α−1
))

+ const.

where we have used the substitution

M = σ2 ˆ̃
CV(α)−1ρ̃−1 ˆ̃

CV(α)−1W

Putting these results together gives (up to an additive constant)

L̃ = µβ

K∑
a=1

ln(r̃a)−
K∑

a=1

r̃a

+ µ ln
(
det
(
IK +MW−1 ˆ̃r

α−1
W ˆ̃r

α−1
))

Taking the derivative of this with respect to r̃a gives the expression

0 =
βµ

r̃a
− 1

+ µtr

((
IK +MW−1 ˆ̃r

α−1
W ˆ̃r

α−1
)−1 ∂

∂r̃a

(
MW−1 ˆ̃r

α−1
W ˆ̃r

α−1
))

Notice that the trace is order M . Truncating to zeroth-order in M , we have r̃a = βµ. We will also find
a first-order approximation. Write r̃a = βµ(1− γa) where γa is order M . Then to first order in M , we
have

0 = γa + µtr

((
IK +MW−1 ˆ̃r

α−1
W ˆ̃r

α−1
)−1 ∂

∂r̃a

(
MW−1 ˆ̃r

α−1
W ˆ̃r

α−1
))
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We take the zeroth-order Neumann expansion
(
IK +MW−1 ˆ̃r

α−1
W ˆ̃r

α−1
)−1

≈ IK , which gives

−γa = µtr

(
∂

∂r̃a

(
MW−1 ˆ̃r

α−1
W ˆ̃r

α−1
))

= µ(α− 1)r̃α−2
a

[
W ˆ̃r

α−1
MW−1 +MW−1 ˆ̃r

α−1
W
]
aa

≈ µ(α− 1)[2(1− α)µ]α−2
[
W [2(1− α)µ]α−1MW−1 +MW−1[2(1− α)µ]α−1W

]
aa

= −1

2
[βµ]−β

[
MT +M

]
aa

= −[βµ]−βMaa

γa = [βµ]−βMaa

This gives the following first order expression

g̃(1)a =
βµ

ω̃a

(
1− σ2

(βµ)β

K∑
b=1

[ρ̃−1]abWba

C̃Va(α)C̃Vb(α)

)
.

and corresponding zeroth-order expansion

g̃(0)a =
βµ

ω̃a

A.9 Optimal homeostatic gains
We now consider the case where we enforce homeostasis on the gains. Our objective, considered as a
function of r̃a = g̃aω̃a is (up to additive constants)

L̃ = −
K∑

a=1

ra + µ log det
(
IK + σ−2r̂1−αW−1r̂1−α ˆ̃

CV(α)ρ̃
ˆ̃

CV(α)
)

Enforcing homeostasis at the cluster level means setting r̃a = χ for all clusters. Substituting this in, we
obtain the function

L̃(r̂ = χIK) = −Kχ+ µ log det
(
IK + χ2(1−α)Q

)
(69)

= −Kχ+ µ
∑
n

log
(
1 + χβλn

)
(70)

where the matrix Q is defined by

Q = σ−2W−1 ˆ̃
CV(α)ρ̃

ˆ̃
CV(α),

with λn its eigenvalues. The optimal χ, within this family of approximate solutions, obeys

0 = −K + µ
∑
n

λnβχ
β−1

1 + χβλn

K =
µβ

χ

∑
n

λnχ
β

1 + χβλn

χ =
µβ

K

∑
n

(
1− 1

1 + χβλn

)
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χ = µβ

(
1− 1

K

∑
n

1

1 + χβλn

)
(71)

We now consider the special cases discussed in Sec. 2.7 in which more precise solutions can be obtained.
Note that in all three cases the analytics correspond to idealisations of the numerical simulations we
actually perform in Sec. 2.9.

Uncorrelated power-law noise In the first special case under consideration, W = IK and ρ̃ has
approximately a A1/n eigenspectrum, where A1 is chosen to normalise the trace of ρ̃ to be equal to K,
i.e.,

A1 =
K∑K
n=1

1
n

The spectrum of Q is therefore λn = b/n where

b = σ−2A1CV(α)2 (72)

In this case, (defining u = n/K) we can make the following approximation to the right hand side of
Eq. (71):

1− 1

K

K∑
n=1

1

1 + χβλn
=

1

K

K∑
n=1

χβλn

1 + χβλn

=
1

K

K∑
n=1

bχβ

n

1 + bχβ

n

≈
∫ 1

1/K

bχβ

Ku

1 + bχβ

Ku

du

≈ b

K
χβ

∫ 1

0

1

u+ b
Kχβ

du

=
b

K
χβ ln

(
1 + b

Kχβ

b
Kχβ

)

=
b

K
χβ ln

(
1 +

K

bχβ

)

This gives the new equation

χ = βµ
b

K
χβ ln

(
1 +

K

bχβ

)
(73)

Approximating A1 ≈ K/ ln(K) (see App. A.5) and using Eq. (72), we obtain that

K

b
≈ σ2 ln(K)

C̃V(α)2
(74)

Substituting Eq. (74) into Eq. (73) gives us

χ

βµ

(
σ2 ln(K)

χβC̃V(α)2

)
= ln

(
1 +

σ2 ln(K)

χβC̃V(α)2

)
(75)
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Aligned noise In the aligned noise case, we approximate ρ̃ and W as having the same eigenbasis.
ρ̃ still has an eigenspectrum of A1/n, and we take W to have an eigenspectrum of Aγ/n

γ where Aγ

normalises the trace of W to be equal to K,

Aγ =
K∑K

n=1
1
nγ

The matrix Q therefore has eigenspectrum bnγ−1 where b = σ−2A1C̃V
2
/Aγ . Inserting this into Eq. (71)

gives us

χ = µβ

(
1− 1

K

∑
n

1

1 + bχβnγ−1

)
(76)

Constant correlation noise The next special case occurs when β = 1, and W = (1− p)IK + p11T .
Using the Sherman-Morrison formula, we obtain

W−1 =
1

1− p

(
IK − p

1 + p(K − 1)
11T

)
Since p

1+p(K−1) ≤
1

K−1 we neglect this term and approximate W−1 ≈ 1
1−pIK . This therefore has the

same effect as making the replacement σ2 7→ (1 − p)σ2. Substituting this into Eq. (75), and using
β = 1, we obtain

σ2(1− p) ln(K)

µC̃V
2 = ln

(
1 +

σ2(1− p) ln(K)

χC̃V
2

)
(77)

We define

q =
σ2(1− p)

µC̃V
2

and rearrange to get

q ln(K) = ln

(
1 +

µq ln(K)

χ

)
Kq − 1 =

µq ln(K)

χ

χ = µ
q ln(K)

Kq − 1

A.10 Hierarchical Bayes-ratio coding
In this appendix, we calculate synaptic weights for propagation of Bayes-ratio coding between popula-
tions. We start with a generative model z(2) → z(1) → s.

The downstream representational curves are

Γm(s) = Π
(
z(2) = z(2)

m |s
)

We recall that the synaptic weights Wmj are given by the formula

Wmj =
wmjωj∑N
i=1 wmiωi

where wmi are the coefficients of the expansion Γm(s) =
∑

i wmiΩi(s).
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We start by calculating wmi.

Γm(s) = Π
(
z(2) = z(2)

m |s
)

=

∫
g
(
z(2)
m |z(1)

)
Π
(
z(1)|s

)
dz(1)

≈
N∑
j=1

g
(
z(2)
m |z(1)

j

)
Π
(
z(1) = z

(1)
j |s

)
δz

(1)
j

=

N∑
j=1

g
(
z(2)
m |z(1)

j

)
δz

(1)
j Ωj(s)

wmj = g
(
z(2)
m |z(1)

j

)
δz

(1)
j

We plug this into our formula, and use additionally that ωj = π
(
z
(1)
j

)
. This gives us

N∑
j=1

wmjωj =

N∑
j=1

g
(
z(2)
m |z(1)

j

)
δz

(1)
j π

(
z
(1)
j

)
=

∫
g
(
z(2)
m |z(1)

j

)
π
(
z
(1)
j

)
dz(1)

= π
(
z(2)
m

)
Wmi =

wmiωi∑N
j=1 wmjωj

=
g
(
z
(2)
m |z(1)

i

)
δz

(1)
i π

(
z
(1)
i

)
π
(
z
(2)
m

)
= g

(
z
(1)
i |z(2)

m

)
δz

(1)
i

which gives the result as required.
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